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Abstract: This article studies several algorithms for QR factorization based
on hierarchical Householder reflectors organized into elimination trees, which
are particularly suited for tall-and-skinny matrices and allow parallelization.
We examine the effect of various parameters on the performance of the tree-
based algorithms. The work is accompanied with a custom implementation
that utilizes a task-based runtime system (OpenMP or StarPU). The same al-
gorithm is implemented in the PLASMA library. The performance evaluation
is done on the recent NVIDIA Grace CPU Superchip.
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1. Introduction

The need for computing the QR factorization of dense matrices with substantially
more rows than columns (so-called tall-and-skinny matrices) arises in a number of
applications, for example, when solving overdetermined systems of linear equations
by the least-squares method or as a preprocessing step for the SVD algorithm used
in reduced order modeling.

Modern algorithms for computing the QR factorization of a matrix using orthog-
onal triangularization by Householder reflectors split the matrix into blocks and then
perform operations on those blocks. Importantly, the parallel TSQR and CAQR al-
gorithms of [7] opened the way to parallelizing the panel factorization and hence
for deriving parallel algorithms for tall-and-skinny matrices. These algorithms are
implemented for example in the ScaLAPACK1 [3] and PLASMA2 [5] libraries. Other
recent approaches include numerically stable variants of triangular orthogonalization
using Cholesky QR [11, 12] or randomized QR factorization methods, see, e.g., [13].

DOI: 10.21136/panm.2024.03
1http://www.netlib.org/scalapack
2https://icl.utk.edu/plasma

29

mailto:brichvit@cvut.cz
mailto:sistek@math.cas.cz
http://dx.doi.org/10.21136/panm.2024.03
http://www.netlib.org/scalapack
https://icl.utk.edu/plasma


The algorithms work with several parameters (e.g., the block size, inner block
size, etc.) that do not influence the result but have an impact on the computation
time [4, 10]. In our paper [6], we present a new version of the algorithm for QR
factorization based on tasks implemented in the OpenMP version of PLASMA [9]
and perform a study of the effect of the main algorithmic parameters on performance
on several multicore CPU architectures by Intel, AMD, and Arm. In light of [7],
the algorithm can be seen as a combination of the parallel and sequential versions
of the Communication-avoiding QR (CAQR) algorithm, with the latter performed on
the leaves of the tree arising from the former.

The main purpose of the present article is to complement the experiments from [6]
with performance measurements on the NVIDIA Grace CPU Superchip, another
recent multicore chip based on the Arm architecture. The reader is referred to [6] for
a more detailed description of the algorithm.

2. QR factorization

QR factorization is a matrix decomposition of a matrix A ∈ Rm,n into a prod-
uct QR, where Q ∈ Rm,m is an orthogonal matrix and Rm,n is an upper trapezoidal
matrix. Many different methods may be used for computing the QR factorization
of a matrix, but for developing parallel algorithms for QR computation, the House-
holder reflector method is of particular interest.

It works by applying a series of orthogonal transformations Q1, Q2, . . . , Qk for k =
min(m,n) on an arbitrary matrix A ∈ Rm,n, where each of the transformations Qi:

• zeros out the vector A(i+1):m,i using the entry Ai,i by a reflection in a subspace
corresponding to the last m− i+ 1 rows of A, and

• functions as the identity transformation in the subspace corresponding to the
first m− 1 rows.

As a result, the matrix R = QkQk−1 . . . Q1A is upper triangular, and the QR
decomposition of A can be formed as A = QR, where Q = QT

1Q
T
2 . . . Q

T
k .

3. Elimination schemes

3.1. Column block Householder reflector algorithm

To promote BLAS Level 3 operations in the application of the Householder re-
flectors, matrix columns can be grouped into column blocks as in the LAPACK
library3 [1]. This column-blocking also opens a way to parallelize the algorithm,
since each block column of the updated matrix can be updated independently. In
particular, the algorithm performs the following steps for each column block:

1. Factorize the column block into upper triangular form using a block House-
holder reflector.

2. Apply the calculated reflector to subsequent column blocks (potentially in par-
allel).

3http://www.netlib.org/lapack
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Figure 1: Example of the column block algorithm for a matrix with 3 column blocks.

The algorithm is visualized in Fig. 1.
In LAPACK, the routine for factorization using block Householder reflectors is

named GEQRT. The routine that applies the calculated factor Q on an arbitrary
matrix of appropriate size is labeled GEMQRT. These two routines will be referred
to as general QR kernels in the rest of this article.

If a multithreaded implementation of the BLAS library is employed, parallelism
is exploited in the second step of the algorithm. This approach, however, only offers
enough parallelism if the matrix has a sufficient number of block columns, as only the
update in Step 2 can be parallelized. Hence, for matrices A ∈ Rm,n with m >> n,
this algorithm exploits parallelism insufficiently and offers subpar performance.

3.2. TS kernels & TS flat tree elimination scheme

In order to develop a parallel algorithm with good performance for tall-and-skinny
matrices, it is necessary to split the matrix into row blocks as well as column blocks.

For a blocked matrix A =
(
AT

1 AT
2

)T
, where the block A1 has a QR factorization

A1 = Q1R1 and the matrix
(
RT

1 AT
2

)T
has a QR decomposition Q̂R, it holds (see [7])

that

A =

(
A1

A2

)
=

(
Q1R1

A2

)
=

(
Q1 0
0 I

)(
R1

A2

)
=

(
Q1 0
0 I

)
Q̂︸ ︷︷ ︸

Q̄

R = Q̄R.

Since Q̄ is a product of two orthogonal matrices, it is orthogonal as well. As a result,

QR factorizations of the matrices A and
(
RT

1 AT
2

)T
have the same factor R.

Consequently, we can calculate the QR factorization of A by factorizing its
block A1 using GEQRT (so that the matrix A1 gets replaced with R1) followed by

factorizing the triangle-on-top-of-square matrix
(
RT

1 AT
2

)T
. The factorization and

subsequent Q application of triangle-on-top-of square matrices is performed using
the so-called TS kernels:

TSQRT performs factorization of a triangle-on-top-of-square matrix
TSMQR applies the transformation from TSQRT on an arbitrary block matrix

made up of two row/column blocks

A scheme of these functions is visualized in Fig. 2.
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Figure 2: Scheme of the TSQRT kernel (left) and of the TSMQR kernel (right)
for parameter values SIDE=‘R’ and TRANS=‘T’.

Expanding on the observations made above, we can calculate the QR factorization
of A using the TS flat tree elimination scheme:

1. Factorize the diagonal block using general QR kernels
2. Use it to eliminate the blocks below the main diagonal with TS kernels.

Similarly to the column block algorithm, only the Q application kernels can be
parallelized in this procedure. This algorithm is called sequential CAQR in [7].

3.3. TT kernels & TT binary tree elimination scheme

We now further examine the QR factorization of a blocked matrixA =
(
AT

1 AT
2

)T
.

Let A1 = Q1R1 and A2 = Q2R2 be the QR factorizations of A1 and A2, in their re-
spective order. Let then Q̂R denote the QR factorization of the blocked matrix(
RT

1 RT
2

)T
. Then (cf. [7]):

A =

(
A1

A2

)
=

(
Q1R1

Q2R2

)
=

(
Q1 1
0 Q2

)(
R1

R2

)
=

(
Q1 0
0 Q2

)
Q̂R.

Instead of using the GEQRT kernel on the upper block followed by the TSQRT

kernel to factorize the blocked matrix A =
(
AT

1 AT
2

)T
, we could first factorize both

blocks using the GEQRT kernel (so that the upper triangular parts of the blocks get
replaced with R1 and R2) and then factorize the obtained triangle-on-top-of-triangle
matrix. The last step is done using the TTQRT factorization kernel, whose
scheme in visualized in Fig. 3.

Based on the procedure presented above, we can define the TT binary tree
scheme for decomposing a general blocked matrix A:

1. Factorize all blocks on & below the main diagonal using GEQRT.
2. Eliminate blocks below the (block) diagonal using TTQRT in a binary tree fash-

ion.

The application kernels TTMQR can be parallelized, but now the factorization
kernels in both steps can be performed in parallel, too (provided that they occur on
the same level of the binary tree). This approach is called parallel CAQR in [7].
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Figure 3: Scheme of the TTQRT kernel (left) and of the TTMQR kernel (right)
for parameter values SIDE=‘R’ and TRANS=‘T’.

3.4. Superblock-based elimination schemes

By comparing the TS flat tree and the TT binary tree elimination schemes, we
can see that:

• The TS flat tree scheme requires fewer kernel calls with only the application
kernels being parallelizable.

• The TT binary tree scheme requires more kernel calls with both the factoriza-
tion and Q application kernels being parallelizable.

In this respect, the two schemes can be seen as block versions of the Householder
reflector and the Givens rotation methods, respectively.

To balance out the effects of the two schemes, we may divide each block column
into superblocks, where all superblocks in each column contain the same number
of blocks (with the possible exception of the last superblock in a column). In other
words, each superblock is composed of a fixed number of subsequent blocks. This
number of blocks is called the superblock size b. We then factorize each column
block of the matrix in the following manner:

1. Eliminate all blocks in an individual superblock using the TS flat tree scheme.
2. Eliminate first blocks of all superblocks in this column block using the TT

binary tree scheme.

To select the superblock size b, we may utilize the formula [6]

b =
mt(n

2
t/2 + nt/2)

γp
, (1)

where

• mt is the number of block rows,
• nt is the number of block columns,
• p is the number of available threads,
• γ is a scaling factor (the default selection is γ = 4 as in the PLASMA library).
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Figure 4: Example of the binary tree elimination scheme for 10 row blocks and
3 column blocks.

Formula (1) takes into account both the shape of the matrix and the number
of CPU cores available for parallelization. As such, we obtain elimination schemes
similar to the TT binary tree scheme for tall-and-skinny matrices, while for square-
like matrices, we obtain elimination schemes very similar to the TS flat tree scheme.

This parameterized scheme is called the superblock binary tree scheme, see
Fig. 4 for an example on a matrix with 10×3 blocks. By selecting a different scheme
for eliminating the first blocks of each superblock in step 2, we may create different
superblock-based schemes (other examples include the superblock greedy and su-
perblock Fibonacci schemes [10], which are later user in Fig. 9). This idea can be
seen as composing a hierarchical elimination tree [8] with different elimination trees
on the top level and flat trees on the leaves (bottom level within superblocks).

4. Task-based runtime systems

The data dependencies between individual kernels can be represented by a di-
rected acyclic graph (DAG), see an example in Fig. 5. From the DAG, we can
see that the amount of available parallelism varies throughout the computation. As
a result, dynamic scheduling is a powerful approach to implement a parallel TS
flat tree scheme as well as the other schemes presented.

To ease the implementation, we use a task-based runtime system. These
are systems that let us split the code into sections called tasks, and then execute
the tasks in parallel while making sure that the data dependencies of the tasks are
satisfied.

The runtime systems used in the implementation are OpenMP and StarPU.
OpenMP4 is a widely used standard for shared memory multicore programming,
while StarPU [2] is a library created mainly with the intention of being used in
heterogeneous systems (systems with multiple types of computing units), mainly
targeting GPU accelerators.

4https://www.openmp.org/
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Figure 5: An example of the directed acyclic graph (DAG) of data dependencies.
The TS flat tree scheme was used on a matrix with 4 row blocks and 3 column
blocks.

5. Results

In this section, we evaluate the effect of different parameters on performance of the
algorithm. We also compare the performance with the Arm Performance Libraries
(ArmPL).

In each of the following figures, every point represents the best performance out
of five consecutive runs. All experiments were performed using m × n matrices of
sizes m = 90000 and n ∈ {250, 500, . . . , 2750, 3000, 4000, . . . , 15000}.

The performance was evaluated at the IT4Innovations National Supercomputing
Center on a node with the following specifications:

• CPU: 1× NVIDIA Grace CPU Superchip
• CPU architecture: Arm64
• CPU cores: 144
• Base CPU frequency: 3.1 GHz
• All-code SIMD frequency: 3.0 GHz
• Instruction set extensions: Scalable Vector Extension 2 (SVE2)

The following library versions were used during the evaluation process:

• GCC 11.3.0
• Hwloc 2.7.1
• StarPU 1.3.10
• Arm Performance Libraries 22.1
• PLASMA 22.9.29

5.1. Block size comparison

In this section, we compare the effect of varying block sizes (nb) on the compu-
tational performance. In PLASMA, the matrix is first copied from column-major
format to the tile layout before the QR factorization starts. After the end, the matrix
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Figure 6: Performance for different block sizes (nb). SuperblockGreedy scheme, inner
block size (ib) equal to nb/4, and γ = 4.

is copied back to the column-major format. We refer to these pre-/post-processing
steps as layout translation. While the cost of the layout translation becomes out-
weighed by the faster processing of the matrix in the tile layout for wider matrices,
we show in [6] that for very skinny matrices, it can be considerably faster to avoid
the layout translation. Hence, for each tested block size in this section, we consider
two variants – with and without layout translation.

We can see from Fig. 6 that the block size of 256 offers the best performance on
the NVIDIA Grace node. Layout translation can boost the performance for wider
matrices, while it can hinder the performance for skinnier matrices.

5.2. Inner block size comparison

In this section, we take a look at the effects of different inner block (ib) size values.
The square blocks of size nb are divided into smaller block columns to perform the
block-local operations by column-block oriented functions. Hence, the inner block
size ib (the number of columns within these inner blocks) is always less than or equal
to the selected block size; details can be found again in [6].

As can be seen from Fig. 7, the inner block size choice of 64 is best for the
examined compute node.

5.3. Elimination schemes comparison

In this section, we compare the performance of the different elimination schemes
presented earlier. We also include a performance curve for the Arm Performance
Libraries (ArmPL) for comparison. The results are shown in Fig. 8.

In accordance with the observations in Section 3, the TsFlatTree scheme delivers
a better performance for wider matrices, but it gets outperformed by the TtGreedy
scheme for skinnier matrices. The SuperblockGreedy scheme combines the advan-
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Figure 7: Performance for different inner block sizes. Tile size nb = 256, Superblock-
Greedy scheme, γ = 4, and layout translation disabled.
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Figure 8: Performance of different elimination schemes. Block size nb = 256, inner
blocks of size ib = 64, layout translation disabled, and γ = 4 (for the Superblock-
Greedy elimination scheme). The numbers in the plot denote the used superblock
sizes.

tages of both schemes to provide a good performance for both skinny and wide
matrices. Interestingly, the performance of the TtGreedy scheme is only marginally
lower on this architecture. All the schemes outperform the ArmPL implementation
for matrices with more than 500 columns, while the latter slightly outperforms the
TsGreedy scheme for skinnier matrices.
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Figure 9: Performance of various superblock size factors (γ values). Block size
nb = 256, inner block size ib = 64, and layout translation disabled.

5.4. Superblock size factor comparison

Next, we visualize the effects of different choices of the values for the γ parameter
presented in Section 3.4. We compare four different values of γ ∈ {1, 2, 4, 8} for three
different superblock-based elimination schemes (SuperblockGreedy, SuperblockBina-
ryTree and SuperblockFibonacci).

In Fig. 9, we can see similar performances exhibited for all elimination trees and
all γ values except for γ = 1. In the case of γ = 1, the SuperblockGreedy scheme
performs better than the other two schemes for matrices with 1750-3000 columns,
despite still not reaching the performance of the other tested γ values.

5.5. Runtime systems comparison

Finally, we examine the differences between the two presented runtime systems.
Figure 10 shows that the performance of both runtime systems is very similar for
wider matrices, while the OpenMP runtime system performs slightly better for skin-
nier matrices for both tested parameter sets.

6. Conclusions

The results of experiments with the NVIDIA Grace CPU Superchip bring us
mostly to similar conclusions as the results from nodes tested in [6]. Nevertheless,
the Grace node results have a few distinct features:

• The performance drop of the TtGreedy scheme for wider matrices is much less
significant.

• There is a difference in performances of the SuperblockGreedy scheme and
the other two superblock-based schemes for γ = 1. More specifically, the
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Figure 10: Performance of the OpenMP and StarPU runtime systems. The Su-
perblockGreedy scheme with inner blocks of size 32 and 128 (for block sizes of 256
and 512, respectively), layout translation disabled, and γ = 4.

SuperblockGreedy scheme performs better for certain matrix sizes. Hence,
γ ≥ 2 can be recommended also for this architecture.

• The difference between the OpenMP and StarPU runtime systems is small for
skinny matrices and even smaller for wider matrices. Nevertheless, OpenMP
still seems as a good choice for implementing this algorithm.

Details of the algorithm and results for different architectures will appear in [6].
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