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I. Šestnáctý ročník celostátní
matematické olympiády

1. Při posuzování průběhu XVI. ročníku matematické
olympiády bychom si měli připomenout slova, kterými
je v statutu této soutěže vymezen její cíl a která jsou stále
aktuální:

,,Účelem soutěže je vést žáky k samostatné práci, vzbudit
и nich zájem o úspěšné studium matematiky, zvýšit úroveň
vyučování a vyučovací výsledky v tomto předmětě. Soutěž
zároveň přispívá k vyhledávání a k podpoře žáků vynikají-
cích v matematice, a tím pomáhá zajišťovat větší příliv
matematicky školených pracovníků pro naši hospodářsko-
technickou výstavbu.“

Soutěžení je tedy prostředkem, nikoli cílem. Matema-
tická olympiáda má být oporou zejména těm, o něž se naše
škola stará dost macešsky — tj. matematicky nadaným
žákům. Má posilovat jejich zájem o studium matematiky,
má jim pomáhat nejen vlastní soutěží, ale všemi svými
akcemi — zkrátka má je vést к tomu, aby zvyšovali své
matematické vzdělání. Její předností proti volným mate-
matickým soutěžím, které probíhají např. v odborných
časopisech, je pevná organizace, zároveň však v přehánění
organizovanosti se skrývá nebezpečí, že celá akce ustrne,
stane se těžkopádnou a neradostnou. Žáci by se měli
účastnit soutěže zcela dobrovolně, z vlastního popudu,
s úmyslem a vědomím, že se hlavně mají něčemu novému
přiučit. Účast v olympiádě nesmí být spojována se školní
klasifikací, nesmí se stát pro žáky obtížnou povinností —

nepříjemným pokračováním školy.
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Soutěžení na mezinárodním poli, kde by se měla ukázat
skutečná úroveň matematických talentů různých zemí,
nabývá však v posledních letech divného zaměření. Stává
se zápolením takřka profesionálně připravovaných žáků
s cílem zcela prestižním: aby ta která země dosáhla co
nejlepšího umístění na mezinárodním žebříčku. I když se
nám tato koncepce nelíbí — nechceme totiž vychovávat
matematické primadony — musíme se jí jako účastníci
mezinárodních olympiád aspoň částečně přizpůsobovat.
Ale i to má své dobré důsledky: musíme vyhledávat
matematické talenty, starat se o zvýšení úrovně vyučování
aspoň v tzv. speciálních třídách a vyhledávat nové účin-
nější a zajímavější způsoby školení pro prázdninová sou-
středění nejlepších účastníků kategorie В. V tomto směru,
započatém v XVI. ročníku, budeme pokračovat i v dalších
letech, neboť jisté dobré výsledky se již projevily. Právě
tak se budeme snažit i nadále zjednodušovat organizaci;
již v XVI. ročníku byl částečně zjednodušen průběh
prvního kola a jeho přípravy (přípravné úlohy), v němž
mimo nezbytný výběr účastníků pro druhé kolo jde hlavně
o cíle studijní.

Je pochopitelné, že řízení soutěže ústředním výborem
musí se stát dostatečně pružné a že iniciativa krajských
a okresních výborů MO, která se projevuje např. organi-
zováním prázdninových soustředění žáků, pořádáním
seminářů a besed, musí být vítána a ceněna.

Úspěch domácí i .mezinárodní matematické olympiády
závisí na práci učitelů matematiky — na drobné všední,
nijak efektní práci: na konzultování s účastníky, na bese-
dách, mimořádných seminářích, na opravování úloh,
pomáhání při studiu literatury apod. Víme, že tato práce
přes všechna krásná slova není dosud orgány státní správy
i masových organizací dostatečně hodnocena a odměňo-
vána; proto asi se učitelům pro ni neposkytuje ani dosta-
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tek času. Na druhé straně je však třeba si uvědomit, že
poctivá, neformální práce v matematické olympiádě
přináší každému učiteli odborný zisk a že к této práci,
kterou nelze nikdy přesně zhodnotit a odměnit, je vždy
třeba aspoň trochu nezištnosti a nadšení.

2. Nyní několik slov к průběhu I. а II. kola XVI.
ročníku MO.

V I. kole můžeme s potěšením konstatovat růst počtu
účastníků v kategoriích A, C a D. V kategorii B, která je
tradičně poznamenána silným poklesem účastníků MO
vzhledem к předcházející kategorii C, je tento pokles
percentuálně nižší než např. vloni (984 kat. В z 1965
kat. C) a předloni (1332 z 2135). Růst počtu účastníků
je jistě ovlivněn nižším počtem zadávaných úloh a možná
i tím, že odevzdávání přípravných úloh nebylo povinné.

Avšak mnohem cennějším faktem, než je růst počtu
účastníků, je udržení, dokonce zvýšení počtu úspěšných
řešitelů I. kola, zvláště v kategoriích C a D. Podrobné
údaje jsou v tabulkách 1 a 2.

Ve II. kole (viz tab. 3 a 4) jsou opět výsledky v katego-
riích A, C a D lepší než vloni, i když v posledních dvou
kategoriích poněkud pokleslo procento úspěšných řeši-
telů. Zvláštní pozornost zaslouží opět kategorie B, kde
počet úspěšných řešitelů je nezvykle nižší. Jednou z příčin
je snad výběr patrně obtížnějších úloh, avšak zarážející
by byl asi rozbor příčin, proč která úloha nebyla nikým
v celém kraji úspěšně vyřešena.

Soutěží II. kola v kategoriích В, C, D soutěž končí;
proto uvedeme pořadí deseti nejlepších úspěšných řešitelů
II. kola v kategoriích В a C podle jednotlivých krajů
(v některých krajích však jejich počet ani čísla deset
nedosáhl):
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Praha — město

В. Zdeněk Arnold, SVVŠ W. Piecka, Praha 2;
Miroslav Toušek, SVVŠ, Na dlouhém lánu, Praha 6;
Ondřej Křivánek, SVVŠ W. Piecka, Praha 2; Vladimír
Miiller, SVVŠ, Na dlouhém lánu, Praha 6; Jan Peland,
SVVŠ, Parléřova ul., Praha 1; Pavel_ Balek, SVVŠ
W. Piecka, Praha 2; Jiří Čenovský, SVVŠ, Velvarská ul.,
Praha 6; Jan Mašek a Jiří Mukařovský, SVVŠ W. Piecka,
Praha 2; Karel Winkelbauer, SVVŠ, Voděradská, Praha
10.

C. Petr Hadraba, Zdenka Stehlíková a Marek Malík,
SVVŠ W. Piecka, Praha 2; Jan Chlouba, SVyŠ, Na
dlouhém lánu, Praha 6; Vladimír Hora, SVVŠ, Nad
štolou, Praha 7; Petr Suske, SVVŠ, Budějovická ul.,
Praha 4; Ilja Miiller, SVVŠ, Na dlouhém lánu, Praha 6;
Dušan Vít a Miroslav Vlček, SVVŠ W. Piecka, Praha 2;
Jaromír Král, SVVŠ, Štěpánská, Praha 1.

Středočeský kraj
B. Pavel Čížek, SVVŠ^Radotín; Jiří Čížek, SVVŠ

Beroun, Josef Zicha, SVVŠ Příbram; Vladimír Doležal,
SVVŠ Příbram a Zdeněk Urban, SVVŠ Rakovník.

C. Miloš Potměšil a Eva Dvořáková, SVVŠ Kolín,
Petra Boušková a Jaroslava Dubová, ŠVVŠ Radotín;
Vlastislav Poledna, SVVŠ Příbram; Jiří Chromý, SVVŠ
Mladá Boleslav; Josef Kymla, SVVŠ Sedlčany; Bořivoj
Shejbal, SVVŠ Hořovice; Anna Zvěřinová, SVVŠ Ří-
čany; Jiří Zajíc, SVVŠ Benešov.

Jihočeský kraj
B. Vladimír Dvořák, SVVŠ Český Krumlov; Aleš

Hanzal, SVVŠ Strakonice, Jiří Novák, SVVŠ Vimperk.
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C. Josef Maroušek, SVVŠ Tábor; Pavel Hejda, SVVŠ
Jindřichův Hradec; Vojtěch Růžička, Jan Syrovátka,
Pavel Kesek, Milan Hrádek, Emanuel Kíimmel, SVVŠ
České Budějovice; Milan Tenkrát, SVVŠ Blatná, Lumír
Srch, SVVS Český Krumlov; Petr Musil, SVVŠ Tábor.

Západočeský kraj
B. Václav Zahradník, SVVŠ J. Fučíka v Plzni; Karel

Rusňák, SVVŠ Klatovy; František Straka a Václav
Hásler, SVVŠ J. Fučíka v Plzni.

C. Jiří Reif, SVVŠ J. Fučíka v Plzni; Jitka Chvalová,
SVVŠ Sušice; Petr Hrázský, SyVŠ Karlovy Vary;
Ivana Koletová, Jiří Laciga, SVVŠ J. Fučíka v Plzni;
Jiří Bečvář, 8. roč. ZDŠ Blovice; Jiří Dvořák, Jan Dušek,
SVVŠ J. Fučíka v Plzni a Jindra Taterová, SVVŠ Sušice.

Severočeský krajB.Jan Janeček, SVVŠ Litvínov; Vladimír Vydra,
SVVŠ Liberec; Pavel Cajthaml a Pavel Hofman, SVVŠ
Teplice; Marcel Štěpánek, SPŠ stroj. Liberec a Ludmila
Boubelíková, SVVŠ Ústí n. Labem, Jateční.C.^Miloš Zahradník, SVVŠ Tanvald; Jiří Hořejší,
SVVŠ Roudnice n. Labem; Miloš Mazánek, SVVŠ
Tanvald; Jaroslava Opočenská, SVVŠ Litoměřice;
Jaroslava Novotná, SVVŠ Rumburk; Jan Polák, SVVŠ
Jablonec n. Nisou; Marie Kratochvílová, SVVŠ Most;
Miloš Derner, SVVŠ Litvínov; Zdeněk Cais, SVVŠ
Litoměřice a Ivan Zvolánek, SPŠ stroj. Liberec.

Východočeský kraj
B. Jan Kerhart, SVVŠ Česká Třebová; Josef Jirásko,

SVVŠ Semily; Karel Plavec, SVVŠ Chrudim; Michal
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Allan, SVVŠ Spořilov-Pardubice; Zdeněk Kalhous,
SVVŠ Spořilov-Pardubice; Petr Schill a František
Jahelka, SVVŠ J. K. Tyla, Tylovo nábřeží, Hradec
Králové.

C.^Jiří Kopřiva, SVVŠ Broumov; Aleš Holubář
SVVŠ Chotěboř; Bohumil Hofman a Jiří Kouba, SVVŠ
Vysoké Mýto; Václav Kadlec, SVVŠ Spořilov-Pardubice;
Bohumil Špína, SVVŠ Turnov; Josef Bažant, SVVŠ
J. K. Tyla, Hradec Králové; _ Pavel Jirman, SVVŠ
Vrchlabí; Alois Kopecký, SVVŠ Ledeč nad Sázavou;
Petr Taras, SVVŠ Havlíčkův Brod.

j>

Jihomoravský kraj
B. Libor Polák, SVVŠ, Koněvova ul,, Brno; Jaromír

Duda, SVVŠ, Křenová ul., Brno; Pavel Švancara,
Miroslav Šilhavý, Jan Schwarz, Lubomír Čermák, Jan
Fertig, Milada Křížová a Pavel Legát, všichni SVVŠ,
Koněvova ul., Brno; Bohumila Vlachová, SVVŠ, Kře-
nová ul., Brno.

C. Petr Klíč, SVVŠ, Koněvova ul., Brno; Miroslav
Macholán, SVVŠ, Zastávka u Brna; Jiří Dadok, SVVŠ,
Královo Pole, Brno; Vladimír Smrž, SVVŠ, Koněvova
ul., Brno; Vladimír Fianta, SVVŠ Veselí na Mor.;
Jaromír Pavliš a Hana Cagašová, SVVŠ, Křenová ul.,
Brno; Bohumil Havel a Zdena Nešporová^SVVŠ, Koně-
vova ul., Brno; Stanislava Sýkorová, SVVŠ, Křenová ul.,
Brno.

Severomoravský kraj
B. Miroslav Kowalec, SVVŠ Havířov; Jiří Demel,

SVVŠ Val. Meziříčí, Karel Zubík, SVVŠ Olomouc, tř.
Jiřího z Poděbrad a Karel Vícha, SVVŠ Jílové.

C. Petr Jůngling, SVVŠ Olomouc-Hejčín; Bohumil
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Rychtář, SVVŠ Bílovec; Jiří Šrajer, SVVŠ Opava;
Antonín Rozsypal, SPŠE Olomouc; Dagmar Winkle-
rová, SVVŠ Rožnov pod Radhoštěm; Radim Blaheta,
Josef Římánek, SVVŠ Ostrava 1; Petr Cetkovský, SVVŠ
Rýmařov; Ladislav Kočí, SVVŠ Šternberk a Břetislav
Kulhánek, SVVŠ Frenštát p. R.

Západoslovenský kraj
B. Anton Huťa, Lubomír Pieružek a Rudolf Požgay,

SVŠ, Novohradská, Bratislava; Jozef Baláž, SVŠ,
Vazovova, Bratislava; Vladimír Čech, Karol Pastor a Ján
Sálava, ŠVŠ, Novohradská, Bratislava; Jozef Hatala,
SPŠ potr. Nitra; Alexander Aulitusz a František Ollé,
SVŠ Komárno, maď.; Peter Kurdel, SVŠ, Metodova,
Bratislava; Alexander Veselovský, SVŠ Komárno,maď.

C. Malin Mastihuba a Niepel Ludovít, SVŠ, Novo-
hradská, Bratislava; Attila Meszaros, SVŠ Galanta, maď.;
Magdaléna Szálay, SVŠ Komárno, maď.; Štefan Vidlár,
SVŠ Holýš; Peter Zika a Ladislav Hudec, SVŠ, Novo-
hradská, Bratislava; Ladislav Németh, SVŠ Komárno,
maď.; Ján Vajda, SVŠ, Vazovova, Bratislava^ Jozef
Čačko a Juraj Dubay, SVŠ, Novohradská a Juraj Šafarik,
ZDŠ, Košická, Bratislava.

Středoslovenský kraj
B. Otakar Ištvánfy, SVŠ Martin; Michal Kaukič, SVŠ

Námestovo; Peter Nagy, SVŠ Banská Bystrica.
C. Emil Horváth, SVŠ Prievidza; Alexander Lang, SVŠ

Zvolen; Mária Kušková, SVŠ Prievidza; Pavol Manger,
SVŠ, Horný Val 5, Žilina; Dušan Mandák, SVŠ Turč.
Teplice; Ján Elexa, SVŠ Turč. Teplice; Anton Fleško,
SPS stroj. Březno; Peter Krčak, SVŠ Lipjt. Mikulášj Anton
Kulika, SVŠ Povážská Bystrica; Ján Štrba, SVŠ Nová
Baňa; Mária Zámečníková, SVŠ Povážská Bystrica.
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Východoslovenský kraj

B. Juraj Glosík, SVŠ, Šrobárova ul., Košice; Pavol
Frantík, SVŠ, Kováčská ul., Košice.

C. Jan Sena, SVŠ Poprad; Miroslav Štepita, SVŠ
Spišská Nová Ves; Peter Vojtas, SVŠ, Kováčská ul.,
Košice; Fdena Vebrová, SVŠ, Kováčská ul., Košice;
Peter Horák, SVŠ Tarasa Ševčenku, Prešov.

3. Třetí kolo. Závěrečné III. kolo MO kategorie A se
konalo dne 13. května 1967 v Plzni. Komise ÚV MO měla
tentokrát velmi obtížný úkol vybrat nejvýše 80 účastníků
z celkem 174 úspěšných řešitelů II. kola, kteří byli
navrženi z krajů (počet úspěšných řešitelů II. kola kat. A
byl však ještě vyšší — celkem 244, jak je patrno z tabulky
1). Protože PÚV MO zaslalo s autorskými řešeními úloh
též pokyny pro klasifikaci, nebylo tentokrát mnoho zá-
vážnějších výkyvů v klasifikaci. Úlohy II. kola však
zřejmě nebyly přiměřeně obtížné, takže počet úspěšných
řešitelů (tj. těch, kteří vyřešili dobře aspoň dvě úlohy)
byl tak neobvykle velký. Proto norma pro povolání do
III. kola byla velmi tvrdá; účastník musel úspěšně
vyřešit v II. kole aspoň tři úlohy; výjimečně bylo povo-
láno též několik žáků z nižších ročníků, kteří vyřešili
dvě úlohy úspěšně. Celkový počet účastníků pak byl 77
(včetně účastníka z Jihočeského a Východočeského kraje,
kteří byli povoláni jako jediní reprezentanti svých krajů
dodatečně).

Zastoupení jednotlivých krajů bylo opět nerovnoměrné
— od jednoho žáka až po 27 žáků z Prahy. Avšak úlohy
III. kola byly tentokrát pro účastníky obtížné, přestože
byly poměrně jednoduché. Bylo vyhlášeno jen 11 vítězů
(ač organizační statut připouští až 20) a 8 dalších úspěš-
ných řešitelů. Uvedeme jejich jména.
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Vítězové III. kola MO v XVI. ročníku, kategorie A
(Poznámka: Žáci na společných místech jsou uvedeni

v abecedním pořádku)
1. Pavel Vejvoda, 3. roč. SVVŠ W. Piecka, Praha 2
2. Martin Macháček, 3. roč. SVŠ, Novohradská, Bra-

tislava
3. Bohuš Sivák, 1. roč. SVŠ Zvolen
4. Radovan Gregor, 3. roč. SVVŠ W. Piecka, Praha 2
5. Petr Kůrka, 3. roč. SVVŠ W. Piecka, Praha 2
6. Jan Kastl, 3. roč. SVVŠ J. Fučíka, Plzeň

7. Erich Wiszt, 3b. roč. SVŠ Banská Bystrica
8. Pavel Polcar, 2. roč. SVVŠ Velké Meziříčí

9. Zdeněk Slanina, 4. roč. SPŠ chem., Vranovská ul.,
Brno

10. Josef Niederle, 3. roč. SVVŠ, Koněvova ul., Brno

11. I Alica Pirická, 3. roč. SVŠ, Kovačská ul., Košice

Úspěšní řešitelé III. kola MO v XVI. ročníku, kategorie A
12. Roman Kotecký, 3. roč. SVVŠ, Šmeralova ul.,

Ostrava,
až Mojmír Obdržálek, 3. roč. SVVŠ, Koněvova ul.,

Brno
15. Věra Pohlová, 3. roč. SVVŠ W. Piecka, Praha 2

Stanislav Slouka, 4. roč. SPŠP, Leninova 40, Brno
16. Martin Bukovčan, 2. roč. SVŠ, Novohradská,

Bratislava
až Jiří Fér, 1. roč. SVVŠ W. Piecka, Praha 2
19. Tomáš Mašek, 1. roč. SVVŠ W. Piecka, Praha 2

. Jiří Vinárek, 1. roč. SVVŠ W. Piecka, Praha 2

až

až

až
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Jména vítězů a úspěšných řešitelů byla oznámena všem
KV MO, příslušným ředitelstvím škol a děkanátům
vysokých škol. Vítězové a úspěšní řešitelé obdrželi od
ministerstva školství ceny v celkové hodnotě 13 000 Kčs.

Na závěr III. kola byla uspořádána tradiční beseda
a dále přednáška doc. J. Klátila „Souvislost matematiky
se sportem“. V neděli dopoledne podnikli účastníci výlet
do okolí Plzně.

4. Soustředění. Od 19. června do 8. července 1967 se

konalo v Hranicích soustředění 90 úspěšných řešitelů
MO a FO z kategorie B.

Dopoledne byly vždy 4 hodiny výuky a téměř každý
večer dvouhodinová beseda s odborným námětem z ma-
tematiky nebo fyziky. Odpoledne bylo věnováno rekreaci.
Žáci byli rozděleni do tří tříd; dvě z nich měly polovinu
programu matematickou a polovinu fyzikální. Jedna třída
měla program pouze matematický, podle návrhu projed-
naného na schůzi ÚV MO v Plzni.

Před IX. MMO se konalo v Praze týdenní soustředění
10 žáků, z nichž 8 vytvořilo naše reprezentační družstvo.
Podrobnou zprávu о IX. ročníku MMO uvádíme v kápi-
tole VI. Rovněž v krajích se konala četná soustředění
řešitelů MO kategorií В a C.

5. Schůze ústředního výboru. V období XVI. ročníku se
konaly tradičně dvě plenární schůze ÚV MO, a to první
dne 5. prosince 1966 v Praze, druhá dne 13. května 1967
v Plzni u příležitosti III. kola kategorie A.

a) Pražská schůze ÚV MO projednala řadu závažných
obsahových i organizačních otázek. Schůzi ÚV MO řídil
jeho dosavadní předseda akademik Josef Novák, který
oznámil definitivní složení nového ÚV MO. Jeho před-
šedou se stal doc. Jan Výšin; složení výboru uvedeme na
závěr zprávy.
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Z organizačních otázek byly např. s přítomnými zástup-
ci SPN prodiskutovány příčiny opětovného opožděného
vydání letáků MO. SPN se zavázalo, že budou-li texty
letáků dodány do konce dubna, zajistí jejich vydání do
konce srpna téhož roku.

Doc. Jan Výšin dále podal informaci о VIII. MMO
a uvedl diskusi o způsobu přípravy vybraných studentů
pro tuto soutěž. Vysvětlil, jak se bude příprava organizo-
vat. Ministerstvo školství schválilo, aby byli školeni
vybraní žáci ve všech krajích, kde jsou pro to podmínky.
V Praze jde především o žáky ze speciálních tříd SVVŠ
W. Piecka. Orientujeme se spíše na žáky z nižších tříd,
což dělají také družstva zahraniční. Jde i o psychologickou
přípravu, neboť naši žáci jsou nervově slabší a psycholo-
gická stránka je při mezinárodní soutěži velmi důležitá.
Doc. Výšin pak oznámil, kteří žáci byli letos vybráni.
Obsahová stránka školení byla již dohodnuta (stereo-
metrie, kombinatorická geometrie, algebra, rovnice a ne-
rovnosti, číselná teorie). Na programu jsou zejména úlohy
MMO, a to i takové, které nebyly zadány. Pokud jde
o venkovské žáky, předpokládá se, že se jich ujmou
KV MO a že jejich školení dohodnou s pracovníky z vy-
sokých škol apod.

Dalšími body jednání byly otázky edice „Škola mladých
matematiků”, zpráva komise JČMF pro péči o nadané
žáky, zhodnocení krajských soustředění MO a celostátního
soustředění kat. В v Banské Bystrici.

b) Na plenární schůzi ÚV MO v Plzni byly projednány
připomínky к organizaci XVI. ročníku a schváleny změny
termínů jednotlivých kol XVII. ročníku MO tak, jak
byly uveřejněny v 1. čísle letošního ročníku „Matematiky
ve škole”. Protože se v diskusi ukázalo, že bude třeba
provést další změny v organizaci MO, byla ustavena
komise ve složení: dr. Fr. Běloun, dr. J. Moravčík, CSc.,
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doc. J. Výšin a VI. Macháček, která podané návrhy zpra-
cuje.

Další komise IJV MO, jejímiž členy jsou prof. Pleskot,
L. Berger, J. Andrys a insp. Jar. Novotný z Prahy při-
praví návrh na hodnocení učitelů za práci v MO.

Dále se pojednalo o některých otázkách spolupráce
s JČMF, zejména o konkursu JČMF na úlohy pro mate-
matickou a fyzikální olympiádu. Zpráva o výsledcích
tohoto konkursu byla již také uveřejněna v časopisech
Matematika ve škole a Rozhledy matematicko-fyzikální.

Zasedání ÚV se pak zabývalo způsobem výběru druž-
štva pro IX. MMO a velmi podrobně se věnovalo pří-
pravě celostátního prázdninového soustředění účastníků
kategorie В v Hranicích na Moravě.

O jeho obsahu promluvil s. dr. J. Fuka, CSc. Uvedl, že
jde o určitý experiment, který spočívá v tom, že v kursu
se bude přednášet látka netradiční. Byla vybrána témata:
Bukovský—Černý: Použití Dirichletova principu v teorii
čísel a v kybernetice; Kovařík—Kovaříková: Dotyk
geometrických útvarů jako extrémní vlastnost; Morávek—
Vlach: Oddělování konvexních množin. Bude se sledovat,
jak žáci tuto látku pochopili a jak ji dovedou uplatnit
v úlohách netradičního charakteru. Podařilo se získat
přednášející, kteří v těchto oborech pracují a mají dobré
výsledky. Iniciátorem této myšlenky byl L. Bukovský.

6. Složení ústředního výboru Matematické olympiády
Předseda: Jan Výšin, docent matematicko-fyzikální

fakulty UK v Praze
Místopředseda: prof. dr. Miroslav Fiedler, DrSc.,

vedoucí vědecký pracovník MÚ ČSAV v Praze
I. jednatel: Vlastimil Macháček, odb. asistent pedagogic-

ké fakulty UK v Praze
II. jednatel: Jiří Mída, odb. asistent pedagogické fakulty

UK v Praze
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Členové:

Josef Bartůněk, ústřední školní inspektor MŠ v Praze
Dr. František Běloun, vedoucí matem, kabinetu Kraj-
ského ped. ústavu v Praze
Dr. Juraj Bosák, CSc., vědecký pracovník Matematic-
kého ústavu SAV v Bratislavě
Dr. Jaroslav Fuka, CSc., vědecký pracovník MÚ ČSAV
v Praze
František Hradecký, odborný asistent MFF UK v Praze
prof. dr. Karel Hruša, vedoucí katedry PedF UK v Praze
Dr. Milan Kolibiar, ČSc., docent přírodovědecké fakulty
Komenského university v Bratislavě
Ladislav Krkavec, ústřední školní inspektor MŠ v Praze
Dr. Jozef Moravčík, CSc., odb. asistent Vysoké školy
dopravní v Žilině
Akademik Josef Novák, vedoucí vědecký pracovník MÚ
ČSAV v Praze
Dr. Jiří Sedláček, CSc., vědecký pracovník MÚ ČSAV
v Praze
František Veselý, profesor v. v., Praha-Petřiny, Janouš-
ková ul.
Jana yeselá, zást. ÚV ČSM, pracovnice školských organi-
žací ČSM
Dr. František Zítek, CSc., vědecký pracovník MÚ ČSAV
v Praze
Dr. Miloslav Zedek, docent přírodovědecké fakulty
university Palackého v Olomouci
Náhradník: Dr. Miroslav Šisler, CSc., vědecký pracovník
MÚ ČSAV v Praze

Dalšími členy ústředního výboru matematické olym-
piády jsou předsedové krajských výborů matematické
olympiády.

Pracovní předsednictvo nového ÚV MO (PÚV MO)
tvoří (uvedeno v abecedním pořadí) J. Bartůněk, prof.
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dr. M. Fiedler, DrSc., dr. J. Fuka, CSc., VI. Macháček,
J. Mída, akademik J. Novák, dr. J. Sedláček, CSc.,
doc. J. Výšin a dr. Fr. Zítek, CSc.

7. Průběh XVI. ročníku MO ukazuje, že úkoly spojené
se soutěží stále rostou a kladou zvýšené nároky na čas
všech pracovníků; přáli bychom si, aby stejnou měrou
rostly i výsledky.

Závěrem několik slov o fyzikální olympiádě. Tato sou-
těž by neměla být naší konkurentkou, ale sympatickou
a vítanou mladší partnerkou. Charakter matematiky
a fyziky na střední škole je však přece jen odlišný; to se
projevuje i v inklinacích žáků к matematice a fyzice.
V matematice jsou žáci na střední škole pochopitelně
dále než ve fyzice, a proto např. zřízení matematické
třídy při prázdninovém soustředění je asi rozumné
a osvědčuje se. Ostatně časový předstih matematiky před
fyzikou je věc zcela přirozená, je realizován i v učebních
plánech vysokých škol. Nelze také nic namítat proti
tomu, aby se žák účastnil zároveň matematické i fyzikální
olympiády, pokud jej tato dvojí účast časově příliš neza-
těžuje. Mělo by to však být spíše výjimkou a učitelé by
neměli nutit žáky к účasti na obou olympiádách; to vše
bylo už dříve konstatováno na schůzi ÚV. Jinak ovšem
přejeme v zájmu rozvoje naší školy fyzikální olympiádě
mnoho úspěchů a jsme ochotni к spolupráci prospěšné
oběma stranám.
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TABULKA 2

Přehled účastníků 1. kola podle krajů v kategorii D*)

Kategorie D
Kraj z toho

dívek
z toho
dívekÚP

Praha - město 1 084 460 710 291

Středočeský 1 096 513 782 405

Jihočeský 738 416 427 234

Západočeský 396 217 253 133

Severočeský 509 262 342 154

Východočeský 883 436 614 287

Jihomoravský 995 464 717 333

Severomoravský 479 603 2891 001

Západoslovenský 572 777 4051 182

Středoslovenský 302894 426 650

Východoslovenský 161659 315 335

Celkem 4 560 6 210 2 9949 437

*) P = celkový počet účastníků; Ú — počet úspěšných řešitelů

18

»



О

oq

i
Sř

2
a«a

>č/3E5
o

>u:»
л

сл

3 *
* £
a o

h ■*

'c*
>co
><D
а
СЛ

-3

O
>U

5 а

3
~ tD
t?
>2 ■3
■г; &
Й 3

c3O
>u
-3

■s
V

>o

£ а

'>>

o
3
O

й.

19



TABULKA 4

Přehled počtu účastníků II. kola podle krajů v kategorii D*)

Kategorie D

Kraj z toho
dívek

z toho
dívekOP

Praha - město 656 264 334 125

Středočeský 505 238 306 136

Jihočeský 393 213 146 70

Západočeský 242 127 83 40

Severočeský 310 141 179 79

Východočeský 509 248 151364

619Jihomoravský 285 174 81

Severomoravský 528 256 59143

379Západoslovenský 738 257 122

Středoslovenský 242526 226 101

Východoslovenský 143 4499300

Celkem 2 5365 326 2 311 1 008

*) P — celkový počet účastníků; Ú = počet úspěšných řešitelů
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II. Přípravné úlohy I. kola

1. KATEGORIE A

1. Jsou-li d13 d2i d3 kladná čísla taková, že d1 ^ d2 ^ d33
pak pro libovolná nezáporná čísla c13 c23 c3 platí

i

(cid\ + c2d2 + c3d3) l~ + -j + -7] =\dl d2 d3J

2 (di + d3)2^ (ci + c2 + c3)
4dxd3

Dokažte.

(Návod. Dokažte nejprve, že
1

dS á 1-)

Řešení. Dokažme nejprve, že platí

d25 h
dx + d3 1

1

i ^ 1 .

d\ d3
d2)(d2 — dA ^ 0, je také

d2 (1)г “Ь 1d1 + d3

Protože (d3
d2(dx + d3) ^ d2 + dxd3 .

Odtud
d\ dyd3 1

d^(di + d3) d2(d1 -j- d3)
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neboli

1

d2d2 1.
1 1d\ ~b d3

d\ d3
Protože také dl ^ dx ^ d3 a dx ^ d3 ^ d33 platí i

1

d1 dt ^ 1 (2)1 1di + d3
d\ d3

a

1

d3 d3
_ ^ 1. (3)1+ *3

<*1 ^3
Nechť nyní cl3 c2, сз jsou nezáporná čísla. Násobením

nerovnosti (1) číslem c13 nerovnosti (2) číslem c2 a ne-
rovnosti (3) číslem c3 a sečtením dostaneme

1 1 (C± + Cjr + -)\d\ d2 d3J
(’.C\di + c2d2 + c3d3) -f- 1di + d3

di d3
^ Cl + c2 + c3.

Protože aritmetický průměr nezáporných čísel
2

— ' — (c\di 4~ c2d2 -f- c3d3),
Cli -f- a3

2 (Cl .c2 c3\

di d3
je nejvýše roven c1 + c2 + c33 je také jejich geometrický

1
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průměr nejvýše roven čj + c2 + c3:

4
0c\d\ d~c2d2 + £3^3) (~r + ~f + -y\ šs\“i “2 “3/№ +«(i+I)
= C\ + c2 + c3 •

Umocněním a úpravou dostaneme odtud dokázanou
nerovnost.

Jiné řešení. Daná nerovnost platí právě tehdy, když
platí

4dxd:i
2 (Cl^l T С2^2 T С3^з) ^^ + - + ^) s<^1 ^2 ^3/(ú?i + d3)

^ (C1 + C2 + C3)2.
Výraz na levé straně nerovnosti (1) je součin dvou činitelů

2
;—~ {c\d\ + c2d2 + c:id2),

Uj -j- U3

2dxd.x

(1)

x -

^1 T <4 Oi
Tento rozklad jsme provedli proto, že aritmetický průměr
čísel x,y je velmi jednoduchý, jak snadno zjistíme výpoč-
tem:

C2
_|_ £з\

do d-J
Cl

У =

1
— (x + У) =

[ci (dx + <4) + c3(d1 + d:i) + ^-(^i^3 + ^2)J 3

-- x + y)

1

dx + d2
tj.

d\dj -f- dl
(di T d3)d2

1
(2)C1 T C3 + C2
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Snadno dokážeme, že koeficient při c2 v (2) je menší
nebo roven jedné. Skutečně, kdyby bylo

d\dz -f- d2
> 1,(ďi + d3)d2

platilo by
did, -j- d2 dyd2 H- d2d2,

neboli
dx(dz d-z) -f- d2(d2 dz) 0 ,

neboli
dí)(d\ d2) 0,

což je ve sporu s předpoklady dx 5S d2 ^ d3. Protože
koeficient při c2 ve vztahu (2) je menší nebo rovný jedné,
je

“ (X + У) ^ C1 + C2 + C3 •

Je známo, že geometrický průměr dvou nezáporných
čísel je menší nebo roven jejich aritmetickému průměru;
platí tedy

(d3

(3)

Уху ^ — (x+y). (4)

Z (3) a (4) dostaneme po umocnění
xy ^ (a + c2 + C3)2 ,

a to je nerovnost, kterou jsme měli dokázat.

2. Rovnica

(1)x3 + ax1 + bx + c — 0
s reálnými koeficientamia, b, c má jeden reálny kořeň a dva
rýdzo imaginárně kořene právě vtedy, ak platí

c = ab, b > 0. (2)
Dokážte.
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Riešenie. I. Nech rovnica (1) má reálny kořeň a a dva
rýdzo imaginárně kořene. Rýdzo imaginárně kořene sú
potom navzájom opačné čísla ± i /3, kde /3 Ф 0 je reálne
číslo. Z rovnice (1) vyplývá

aa2 + bot + c — — a3,
i/?3,
i/53.

(3)—a/32 + bifl + c =

—aft2 — bi(3 + c =

Sčítáním druhéj a třetej rovnice vo vztahu (3) dostaneme
c = a/32.

Odčítáním druhej a tretej rovnice vyjde
b = /32.

Po dosadení z (5) do (4) dostaneme rovnost’ zo vzťahov
(2). Kedze /3 Ф 0 je reálne, je b = /32 > 0, čo je nerovnost’
zo vzťahov (2).

Poznámka. Vztahy (2) možno odvodit’ tiež zo známých
vzťahov medzi koreňmi a koeficientami rovnice (1):

(a + i/3 i/3)
6 - (i/3)(—i/3) + ai/3 - ai/3 - /32 > 0 ,

c = —a . i/3 . (—i/3) = —a/32 = a6 .

(4)

(5)

a = — a ,

II. Nech platia vztahy (2). Potom možno rovnicu (1)
napísať v tvare

a3 + a*2 + bx -f- ab = 0 ,

čiže
х(л:2 + b) + a(x2 -f 6) = 0 ,

alebo
(a + a)(x2 + b) = 0 . (6)

Pretože je b > 0, má rovnica x2 b = 0 dva rýdzo
imaginárně kořene ± i]/6. Okrem nich má rovnica (6)
ešte reálny kořeň —a.
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3. V triede je 15 dvojsedadlových lavic a 27 žiakov.
Určití dvaja žiaci majú sedieť (z výchovných dóvodov)
vedla seba v tej istej lavici a žiadna lavica nemá zostať
prázdna. Kolkými spósobmi možno žiakov rozsadiť? ,

Riešenie. Najskór vyberieme miesta pre rozsadenie
žiakov. Obaja vybraní žiaci budú sedieť v jednej z 15
lavic. To je 15 možností. Zo zostávajúcich 14 lavic budú
tri obsadené len jedným žiakom. V každej z týchto troch
lavic bude buď pravé alebo l’avé miesto prázdné. Pre
usadenie zostávajúcich (nevybraných) 25 žiakov je teda

(з) -(3 . 23 (1).2.2.2

možností. Celkom je teda podia (1)
. 23 = n(315 . (2)

spósobov, ako možno vybrat’ miesta pre rozsadenie.
Pri každej z týchto n situácií možno vybraných žiakov

usadit’ dvorná spósobmi a okrem toho ostatných nevybra-
ných 25 žiakov 25! spósobmi. Pri každej z n situácií je
teda

2.25!

rozsadení. Podlá (2) a (3) je počet všetkých možných
rozsadení

(3)

(315 . . 23.2.25! ,

t.j.

(316 . 15 . .25!

4. Je dáno n bodů (;n ^ 3), z nichž žádné tři neleží
v přímce, a množina U skládající se z n úseček, které
spojují vždy dva z daných bodů.
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Pak lze z daných n bodů vybrat k bodů Aí} .

Ak(k ^ 3) tak, že všechny úsečky AXA2, A2A3,. . Ак_хАк)
АкА1 náležejí množině U.

• •>

Řešení. Pro n 3 je věta zřejmá; pro libovolné n
ji dokážeme matematickou indukcí. Budeme předpoklá-
dat, že věta platí pro všecka k ^ n a dokážeme ji pro
n -j- 1. Při indukčním kroku rozlišíme tyto dva případy:

a) Mezi danými n + 1 body lze nalézt skupinu k-
bodů (k ^ w), které jsou spojeny k úsečkami z množiny
U;

b) žádná taková skupina k bodů (k ^ ri) neexistuje.
V případě a) platí věta pro daných n + 1 bodů podle

indukčního předpokladu.
V případě b) vycházejí z každého z daných n + 1 bodů

aspoň dvě úsečky množiny U, neboť každých n bodů je
spojeno nejvýše n — 1 úsečkami z U; proto ze zbývajícího
(n + l)-ho bodu vycházejí aspoň dvě úsečky množiny U.

.Budiž AxA2 úsečka množiny U. Z bodu A2 vychází
mimo úsečku A2AX ještě úsečka A2A3 množiny U.

Z bodu A3 vychází mimo úsečku A3A2 ještě úsečka
A3AX množiny U, atd. Tak zkonstruujeme posloupnost
úseček množiny U

(1)AXA2, A2A3, A3AX, .. ., AnAn+1 •

Žádný z bodů
-^2> ^4> • • •) A

nemůže splynout se žádným z předcházejících bodů,
neboť pak by pro některé k ^ n nastal případ a) a nikoli
b). Posloupnost (1) obsahuje tedy n různých úseček
množiny U a body A13 A23. . ., An+1 jsou navzájem různé.
Druhá úsečka vycházející z bodu An+1 musí být tedy
An+1A1} a tím je dokázáno, že věta platí i v případě b)
pro n + 1.

И II
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2. KATEGORIE В

1. Funkce proměnné Jt

у = a\x\ + b\x
nabývá hodnoty 0 pro x = — 1 a jc = 3; největší hodnota,
které nabývá, je у = 2. Určete konstanty a, b, k a na-
kreslete graf funkce (1).

Řešení. Pro jc = — 1 dostaneme z (1)
a -f b\l + k\ = 0;

pro x = 3 dostaneme z (1)
3a + b\3 - k\ = 0.

Z (2), (3) vyloučíme a; vyjde
b( |3 — k\ — 3|1 + k\) = 0.

Je b Oj jinak by totiž vyšlo z (2) také a = 0 a funkce (1)
by nenabývala hodnoty у — 2. Z (4) pak dostaneme
|3 - k\ = 3|1 + Л|, neboli

3 - £ = ± 3(1 + &).
Řešením (5) vyjde buď k = 0, nebo k = — 3. Je tedy
třeba vyšetřovat dvě funkce

У = (a + b) \x\

k\ (1)

(2)

(3)

(4)

(5)

(П
a

(1")У = a |*| + b \x + 3| .

V případě k — 0 dostaneme z (2) b = —a, funkce (F) je
рак у = 0, a nenabývá tedy hodnoty у = 2. V případě
k — —3 dostaneme z (2) a = —26; funkce (1") má pak
rovnici

(6)26|л:| + b\x-\-3\ .У =

Zkoumejme průběh funkce (6). Budeme vyšetřovat tři
intervaly:
I. x —3, II. — 3 ^ x ^ 0, III. x ^ 0 .
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V intervalu I. můžeme rovnici (6) přepsat ve tvaru
у = bx — 3b

a v intervalu II. ji můžeme přepsat ve tvaru
у - 3bx + 3b .

Konečně v intervalu III. ji můžeme přepsat ve tvaru
у = —bx 4- 3b .

Kdyby bylo b < 0, nabývala by funce (6c) pro dosti
velká kladná x hodnot větších než 2; kdyby bylo b = 0,
bylo by у = 0 pro všechna x. Je tedy b > 0. Funkce
(6a) je rostoucí a v bodě x — —3 dosahuje nejvyšší
hodnoty у — —6b. Rovnost у — 2 není splněna pro
žádné b > 0. Funkce (6b) je rovněž rostoucí a v bodě
x = 0 nabývá nejvyšší hodnoty у — 3b. Funkce (6c)
je klesající a její nejvyšší hodnota у = 3b je rovněž v bodě

2
x = 0. Musí být tedy 3b — 2, tj. 6 = — a z (2) pro

4 3
k = — 3 dostaneme a — — у. Hledaná funkce tedy je

4 2
— |x| + — \x + 3| .

(6a)

(6b)

(6c)

(7)У = —

Graf funkce (7) je na obr. 1.
2. Určité všetky prirodzené čísla jc, ktoré vyhovujú

rovnici

4x-i + 7.2X + 48 - x{x - 1) . . . 3.2 . 1 . (1)
Riešenie. Číslo л: = 1 zrejme nevyhovuje. Ak je

x ^ 2, je 1’avá strana (1) násobkom štyroch a teda aj súčin
x{x — 1) ... 3.2 . 1 je násobkom štyroch. Preto musí
byť x 4.

Ak je x ^ 4, je 1’avá strana (1) násobkom šestnástich
a preto aj číslo x(x — 1) ... 3.2 . 1 je násobkom šest-
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nástich, čo však znamená, že
(2)x ^ 6 .

Upravme (1) pre x ^ 6. Dostaneme
16.4*-3 + 7.16.2*-4 + 3 . 16 - x . {x - 1) ...

. . . 8.7.6.5.4.3.2.1 .

Obe strany rovnice (3) vydělíme číslom 16:
4X~3 + 7.2*-4 + 3 = x(x - 1). . . 8.7.45. (4)

Ak je x > 7, je pravá strana rovnice (4) násobkom
ósmich, teda párne číslo. Eavá strana tejto rovnice je
však naproti tomu číslo nepárne. Preto je

jc + 7 .

(3)

(5)
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Spojením vzťahov (2) a (5) dostaneme, že len čísla
x = 6 a x = 7 móžu byť riešením rovnice (1).

Skúškou zistíme, že x = 7 rovnici vyhovuje, ale л:=6
nevyhovuje.

3. Je daná kružnica k = (5; r), bod Л, pre ktorý platí
Л5 — d > r a kladné číslo q > r. Zostrojte kružnicu
s polomerom o, ktorá prechádza bodom A a dělí kružnicu
k na dve polkružnice. Určité podmienku riešitelnosti.

Riešenie. Rozbor (obr. 2). Označme v, hladanú
kružnicu, M jej střed. Spoločná tětiva BC kružnic k, к
je priemerom kružnice k, preto vznikne pravoúhlý
trojuholník CSM, ktorého, odvěsna CS má dlžku r,
přepona CM = q. Z tohto trojuholníka možno určiť .

dížku druhej odvěsny
SM = 1Iq2 - r2. (1)
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Střed M hl’adanej kružnice к leží jednak na kružnici
k' = (S’, ]!Q1 — r2), jednak na kružnici k"

Skúška. Obrátene, ak je M spoločný bod kružnic
k', k" a x kružnica (M; MÁ), potom * splňuje prvé dve
podmienky úlohy. Z (1) ďalej vyplývá, že

o — r < SM < o + r ,

(A; q).

(2)
čiže

(Уе — r)2 < Уе — Г . ]/q + r < (]/o + r)2 .
Kružnica ^ přetne teda podlá (2) kružnicu k v dvoch
róznych bodoch B, C. Kedže z (1) vyplývá q2 — r2 +
+ SM2, sú oba trojuholníky SMC, SMB pravoúhlé,
BC je priemer kružnice k, tj. к dělí k na dve polkružnice.

Diskusia. Úloha má aspoň jedno riešenie právě vtedy,
keď kružnice k', k" majú aspoň jeden spoločný bod, tj.
keď platí

|SAÍ - q\ ^ d ^ SM + o,

čiže podia (1)
q — }]q2 — r2 ^ d o + ]/Q2 — r2.

Úpravou nerovností (3) dostaneme
]jq2 — r2

(3)

]/ o2 — r2 ^ q — d,d — q ,

t-h
(4) 'Уq2 — r2 ^ | d— p| .

Nerovnost’ (4) je ekvivalentná s nerovnosťou, ktorú
dostaneme jej umocněním, tj. s nerovnosťou

o2 — r2 d2 + g2 — 2do ,

čiže
(5)2dg ^ d2 + r2.

Nerovnost’ (5) je teda podmienkou riešitelnosti úlohy.

4. Krychle o hraně délky 6 je rozdělena v 63 = 216
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jednotkových krychlí. Krychli je vepsána koule o průměru
6. Zjistěte, kolik jednotkových krychlí leží v kouli a kolik
jich neobsahuje žádný vnitřní bod koule.

Řešení. Označíme střed vepsané koule а А, В, C
její dotykové body s třemi stěnami krychle, které mají
společný vrchol. Poloměry SA, SB, SC jsou po dvou
navzájem kolmé. Stačí řešit úlohu pro oktant (9 =
= S(ABC) a výsledky znásobit osmi; to vyplývá ze
souměrnosti koule i krychle podle rovin SAB, SBC,
SCA.

Označme po řadě x, y, z vzdálenosti toho vrcholu
jednotkové krychle, který leží nejblíže bodu S, od rovin
SBC, SCA, SAB. Další vrcholy této jednotkové krychle
mají od rovin SBC, SCA, SAB vzdálenosti:
[x + \,y, z], [x,y + 1,з], [x,y, z + 1 ], [x + l,y + 1, z],

(1)
[x + 1 ,y, z + 1], [x,jy + 1, z + 1], [x + 1 ,y + 1,3+1].
Z toho plyne, že čísla x,y, z probíhají (navzájem nezávisle)
čísla 0, 1, 2; tak dostaneme 27 jednotkových krychlí,
které náležejí oktantu (0.

Jednotková krychle náleží vepsané kouli právě tehdy,
nálcží-li jí vrchol nej vzdálenější od bodu S; to je podle
(1) vrchol [x + 1, у + 1, z + 1]. Jednotková krychle
náleží tedy kouli, platí-li

O + l)2 + ty + l)2 + (2 + l)2 á 9 .

Nerovnost (2) má tato řešení:
(2)

2x + 1 1 1 2 21 1

1У + 1 1 2 2 21 1

1 1 2 2 2z -f 1 1 1

To je 7 jednotkových krychlí v oktantu (9\ celkem 56
jednotkových krychlí, které leží v kouli.
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Jednotková krychle nemá s koulí žádný společný vnitřní
bod, jestliže nejbližší vrchol к bodu 5 leží bud na kouli,
nebo vně koule, tj. když pro bod [x, ys z] platí

*2 + У2 + z1 ^ 9 .

Nerovnost (3) má tato řešení
(3)

22 21

22 1 2У

22 2 1

To jsou 4 jednotkové krychle v oktantu 6; celkem 32
jednotkových krychlí, které neobsahují žádný vnitřní
bod koule.

Zbývajících 216 — (56 + 32) = 128 jednotkových
krychlí obsahuje jak vnitřní, tak vnější body koule.

3. KATEGÓRIA C

1. Určité všetky riešenia sústavy rovnic
*(jc + y) + z(x — y) — 6,
У(У + z) + x(y
z(z + x) + y{z — x) = 3.

(1)Z) = -2,

Riešenie. Pokúsime sa vylúčiť z. Pri roznásobení si
všimnime, že z sa dá z 1. a 2. rovnice vylúčiť tým, že sa
sčítajú.

Sčítáním prvej a druhej rovnice sústavy (1) dostaneme
JC2 + xy -T xz — уz + у2 + уz + xy — xz = 4

čiže
(2)(* + y)2 = 4 .
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Podobné dostaneme sčítáním druhej a tretej rovnice
sústavy (1)

(3)(y + z)2 = 1
a sčítáním tretej a prvej rovnice sústavy (1)

(z + xf = 9 . (4)
Z (2), (3), (4) vyplývá

X + у = ±2,
У + z — d: 1 j

£ + X — rb 3 .

(5)

Odčítáním druhej rovnice sústavy (5) od tretej rovnice
tejto sústavy dostaneme pre x — у štyri možné hodnoty:
2, —2, 4, —4. Ďalší výpočet prevedieme pomocou ta-
bulky

2 | -22 2 2 2 -2 -2* -r

2 2-2 4 -4 2 4 -4* — У

2 -2 10 3 - 1 0 -3x

0 2 -1 -2 0 -33 1У

1 -3 о -2 3 -1 2 Ол

Posledný riadok tabulky bol určený tak, aby bola splněná
druhá a tretia rovnica sústavy (5).

Sústava má teda 8 riešení, ako sa přesvědčíme skúškou.

2. Nechť prvočísla p13 p2 jsou různá od čísel 3 a 5.
Pak číslo p$ — pj je násobkem patnácti. Dokažte.

Řešení. Celé číslo je násobkem patnácti právě tehdy,
když je součinem dvou celých čísel, z nichž jedno je
násobkem tří, druhé násobkem pčti nebo jedno je násob-
kem tří i pěti. V našem případě je

Pt pí — {pí + pV){p\ Pl)■
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Provedeme-li několik numerických výpočtů, zjistíme, že
PÍ — PÍ je vždy násobkem tří, a aspoň jedno z čísel
PÍ + pl 3 PÍ — Pl Iе násobek pěti. Pokusíme se zjistit,
zda tomu je tak v každém případě. Čísla px> p2 dávají
při dělení třemi zbytky buď 1, nebo 2. Proto každé z čísel
pl, pl dává při dělení třemi zbytek jedině číslo 1. Proto
je pí — pl vždy dělitelné třemi.

Čísla Pj, p2 dávají při dělení pěti zbytky buď 1, nebo 2,
nebo 3, nebo 4. Proto každé z čísel p\, pl dává při dělení
pěti zbytek buď 1, nebo 4. Je-li totiž např. px — 5 a -j- 2,
je p\ = 25 a2 + 20 a -f- 4 = 5/5 + 4. Jsou-li oba zbytky
při dělení pl, pl pěti sobě rovny, je pl — pl násobkem
pěti, jsou-li tyto zbytky různé (1 a 4), je pl + pl
násobkem pěti.

Dokázali jsme: Číslo pl — p\ je vždy dělitelné třemi;
aspoň jedno z čísel pl — pl, pl + pl je dělitelné pěti.

Protože čísla 3, 5 jsou nesoudělná, je
Pt p\ — (PÍ + pl)(pi PÍ)

dělitelné patnácti.

3. Sestrojte rovnoramenný trojúhelník ABC se zá-
kladnou А В, je-li dán součet s výšek na základnu a na
rameno a dutý úhel у proti základně.

Řešení. Rozbor (obr. 3). Označme A\ C paty výšek
spuštěných z vrcholů A3 C. Bod C je středem základny
AB; patu kolmice spuštěné z bodu C na přímku BC
označme D. Potom úsečka C'D je střední příčkou v troj-
úhelníku AA'B, a tedy platí

11
(1)CD = — AA' = — va.

22

Označme dále E střed výšky CC = vc. Bod E je středem
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přepony pravoúhlého trojúhelníku CCD, takže je
EC = EC = ED = — г>с. (2)

2

в>4 С'

Obr. 3.

Spojením (1) a (2) dostaneme
1 1 1

ED + CD = (3)— vc + —
2 2 2

Protože trojúhelník DCE je rovnoramenný se základ-
nou DC, platí pro jeho vnější úhel

1 1
<ŽC'ED = (4)— у -}

2 2

Rovnoramenný trojúhelník CDE je tedy dán součtem
základny a jednoho ramena [viz (3)] a úhlem proti
základně [viz (4)]. Konstrukci tohoto pomocného

у = у .
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trojúhelníku ukazuje obr. 4; je totiž
1 1
- (180° - r) = 90° - ~ y,

"(180° — y) ~ 45° —\ У ■
4 4

■$EC'D = =

takže
1

<$ED'D ---

£\
\

7 4
4*\

\ 4^
\
\

\ ✓

/cř< /

я
iv° \/

/

D1

Obr. 4.

Konstrukce. Nejprve sestrojíme trojúhelník ED'D,
v němž <£D'ED = y, ED'D = 45° - ~ у, ШУ =

1 1 4
=

2" (®« + Vc) = 2 S •

Osa o strany DD' protne stranu ED' v bodě C. Snadno
doplníme bod C, přímku CD a body Л, A tak, aby troj-
úhelník ABC byl rovnoramenný se základnou AB.
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Zkouška. Sestrojený trojúhelník ABC má <£ACB =
= у, neboť podle konstrukce vzhledem ke (4) je <£ECD-=
= — y. Podle konstrukce je též rovnoramenný, platí

pro něj (3), a tedy va + vc = 5.
Diskuse. Trojúhelník ED'D lze sestrojit, neboť

у + 45° --у = 45° +-y < 45°+--180°= 180°.
4 4 4

Osa o protne stranu ED' vždy ve vnitřním bodě C',
neboť platí

r + 2(45°-ly)
1
-y< 180° .*)
2

Sestrojení bodů С, B, A je vždy proveditelné, a proto
má úloha vždy řešení.

90° +

(5; r), bod A z vnútra kruhu
ohraničeného kružnicou k a kladné číslo d. Bodom A je
vedená tětiva kružnice tak, že tento bod ju rozděluje na
dve úsečky, ktorých dlžky majú rozdiel d.

a) Vyjádříte dlzku t tejto tětivy a jej vzdialenosť od
středu 5 pomocou parametrov r, ď, v = SA.

b) Zostrojte pomocou výsledku z úlohy a) všetky tětivy
danej vlastnosti.

Riešenie. a) Označme AP > AQ úsečky vytvořené
na tětivě podlá textu úlohy. Potom platí (pozři obr. 5)

AP + AQ = í,
AP - AQ

4. Je daná kružnica k

dl
*) Používáme věty:
Osa strany BC trojúhelníku ABC protne stranu А В ve vnitřním

bodě právě tehdy, platí-li pro úhly trojúhelníku ABC
x + 2/3 < 180° .
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1 1
z čoho vyplývá 2АР = t + d čiže AP

1 2t + 2d'Úsečka MA má preto velkost’— d. Vzdialenosť tětivy

PQ od středu 5 kružnice označme и = SM. Z právo-
uhlého trojuholníka ASM podlá Pythagorovej vety
vyplývá

(Иv2 = u2 + (1)

Z pravoúhlého trojuholníka QMS dostaneme
r2 — u2 +

Odčítáním rovnice (1) od rovnice (2) vyjde
r2 - v2 = — - —

4 4

(l -)• (2)

(3)
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a po úpravě
t — ]/4r2 + d2 — 4z>2.

Zo vztahu (1) vypočítáme
(4)

1 (5)-r d2 .

4

Vzorce (4) a (5) sú riešením úlohy a).
b) Množina stredov všetkých tětiv kružnice k, ktoré

majú dlzku t danú vzorcom (4), je kružnica x = (S; и),
pričom и je dané vzorcom (5). Konstruktivné získáme
poloměr и ako odvěsnu pravoúhlého trojuholníka s pre-

ponou v a druhou odvěsnou (pozři Д AAÍS na obr. 5).
Hladané tětivy vytína kružnica k na dotýčniciach

vedených z bodu A ku kružnici x. Bod A leží vždy mimo
kružnice x.

Pretože podlá textu úlohy je v < r, je tiež 4r2 — 4г>2 >
> 0 a vzorec (4) dá vždy kladné t. Toto číslo t je menšie,
alebo rovná sa 2r právě vtedy, ak je vzhladom na vzorec (4)

4r2 + d2 - 4v2 = t2 ^ (2r)2

v2и =

čiže d2 — 4v2 Д 0, skadial’
d Д 2v . (6)

Ak je splněná nerovnost’ (6), dá vzorec (5) reálne и <
< v < r.

Nerovnost’ (6) je teda podmienkou riešitelnosti.

4. KATEGORIE D

1. Je dán čtverec ABCD o straně délky a. Čtverec
ABCD je rozdělen dvěma přímkami, z nichž jedna je
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rovnoběžná s AB a druhá s BC, ve čtyři obdélníky
PA> Pb> Pc> Pdj přitom PA(PB3 Pc, PD) )e obdélník,
který obsahuje bod A(B, C, D). Pro obsahy obdélníků
platí PA : PR : Pc — 2 : 3 : 4.

Vyjádřete jejich rozměry pomocí a a vypočtěte PD : PB.

*4

Po Pc«3

4 R4

"0ж
a-jrдг

Obr. 6.

Řešení, a) Označíme-li x, у rozměry obdélníku PA,
pak platí pro obsahy (viz obr. 6)

Pa = xy, PR = (a — x)y, Pc = {a — x) (a — 3;),
x{a — y)-

Podle (1) a podle podmínky úlohy je
xy : (a — x)jy = 2 : 3, (a x)jy : (a — x) (a — y) = 3 : 4,

(1)

tj-
a —3;

_ 43a — x
(2)

2 5 3Уx
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Z (2) plyne
33 42

(3)x = — а, у — — a, a — x — — a, a — у = —a .
5 75 7

Vzorce (3) jsou hledaná vyjádření rozměrů obdélníků
pomocí čísla a.

b) Nyní vypočítáme poměr PD: PB; podle (1) je
PD‘PB = x{a — y) : (a — x)y .

Po dosazení ze (3) dostaneme
p p 2 4 3 3PD:PB = -a--a:-a.-a

a po další úpravě hledaný poměr
PD:PB = 8:9.

2. Autobus prechádzal trať skladajúcu sa z troch
rovnako dlhých úsekov. Prvý úsek prechádzal rýchlosťou
v km/h; v druhom úseku šiel rýchlosťou o 10 km/h
mensou, v treťom úseku šiel rýchlosťou o 5 km/h menšou
než v druhom.

a) Vyjádříte priemernú rýchlosť autobusu na trati
pomocou v.

b) Móže byť pre niektoré v priemerná rýchlosť ^-?
Riešenie. a) Rýchlosť autobusu vyjádřená v km/h

na jednotlivých úsekoch bola: v — 10, v — 15.
Označme s dížku jedného úseku tratě v km a t dobu,
ktorú autobus potřeboval na prejdenie celej tratě, v hodi-
nách. Priemerná rýchlosť x (km/h) je taká rýchlosť,
ktorou by musel ísť autobus vo všetkých troch úsekoch,
aby prešiel trať 3s za čas t. Doby, ktoré autobus potřeboval
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na prejdenie jednotlivých úsekov, sú po radě —, —- ,

5
. Pre celkovú dobu t platí teda

— 1 .

v v — 10 v — 15

Okrem toho však platí 3s — xt, čiže

v — 15

? , (1)t =

3s

(2)t = —

x

Spojením vzťahov (1) a (2) po úpravě dostaneme rovnicu
pre jc:

3-=±+ 1 1
(3)

v — 10 v — 15x v

Stade

3
_ (v — 10) (v — 15) + v(v — 15) + v(v — 10)

v{v — 10) (v — 15)x

a po úpravě
3v(v2 — 25v + 150)

3v2 — 50^ + 150
Vzorec (4) dává riešenie úlohy a).

V
b) Skúsime, či pre niektoré v može byť x = —.

V ^
Dosadíme — za x vo vztahu (4). Po odstránení zlomkov
dostaneme

(4)

v(3v2 — 50v + 150) = 6v(v2 — 25v + 150).
Ak vydělíme obe strany rovnice (5) kladným číslom v}
prevedieme všetky členy rovnice na pravú stranu a obe
strany rovnice vyměníme, dostaneme

3v2 - 100z> + 750 = 0

(5)
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v • v

cize

100
v2 v + 250 = 0.

3

Ďalej platí

/
_ 50\2_ 250

V 3 / 9e-fr 2500
+ 250 = 0, číže

9

Stade vyplývá
1650

v — —= ±
3 3

t. j. buď v == 22, alebo v = lly. Vzhladom na text úlohy
vyhovuje len v = 22 (km/h).

3. Je dán čtverec ABCD o straně délky a; S je průsečík
jeho úhlopříček, A', В', C', D' jsou po řadě středy úseček
ASу BS, CS, DS.

Vypočtěte obsah části čtverce ABCD, která je pokryta
trojúhelníky A'CBy A'CD, B'D'A, B'D'C, i obsah
osmiúhelníku, který je společnou částí čtyřúhelníků
AB'CD' а ВC'DA'.

Řešení. Označíme P průsečík úseček AB', A'B
(viz obr. 7); tyto úsečky jsou těžnicemi trojúhelníku
ABS, proto je bod P jeho těžištěm. Označme Q střed
úsečky AB. Úsečka SQ je potom třetí těžnice trojúhel-
niku ABS. Protože trojúhelník ABS je rovnoramenný, je
úsečka SQ zároveň výškou trojúhelníku ABS a úsečka
PQ — -i SQ je výškou trojúhelníku ABP. Obsah
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trojúhelníku АВР je tedy

aabp =

Obdobně je obsah každého z nevyšrafovaných trojúhel-
níků roven J2 я2-
Obsah hvězdice je tedy

P1 = a2-4- — a2 = ?-a2. (1)
12 3

Označme P2 obsah každého z trojúhelníků А'С'В,
A'C'Dj B'D'A, B'D'C, P3 obsah osmiúhelníku. Pak
platí

(2)4P‘2 P3 — ^*1 •
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Protože je
p _ 1 a]j2 a]/2 _ a2

2 ~2" 2 2~~J’ (3)

je podle (2), (3), (1)
„ fl24- —

1
~аг =Po = 4Po - P -a2.

4. Na obr. 8 je čtverec ABCD o straně délky 9 cm
a dále 12 shodných rovnostranných trojúhelníků Тл,
Га,. . Tí2. Převedeme trojúhelník T} v T2i T2 v T2)
. . T12 v Г, vždy otočením kolem společného vrcholu
obou trojúhelníků, provedeným ve čtverci ABCD.

a) Sestrojte čáru, která je dráhou vrcholu X ve všech
těchto otočeních.
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b) Vypočtěte její délku a porovnejte ji s délkou kružnice
opsané i kružnice vepsané čtverci ABCD.

Řešení, a) Čára je vyznačena v obrázku tlustě.
Skládá se ze čtyř oblouků kružnice o poloměru AX =
= 3 cm příslušných к středovému úhlu 120° a ze čtyř
oblouků kružnice téhož polomčru příslušných к středo-
vému úhlu 30°.

b) Délka čáry je (v cm)

d= 4— + 4 • — = Ютг.
6ti

(1)
123

Délka kružnice opsané čtverci ABCD je
d± — тс . 9 . j/2 == \2}1tc j

délka kružnice vepsané čtverci ABCD je
d2 = 9тг.

Je tedy podle (1), (2), (3)
d% d •

(2)

(3)
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III. Súťažné úlohy I. kola

1. KATEGÓRIA A

1. Čísla a, b sú prirodzené nepárne čísla, a < b.
Súčet všetkých prirodzených čísel váčších než a a men-
ších než b sa rovná 1000. Určíte čísla a, b.

Riešenie. Prirodzené čísla váčšie než a a menšie
než b tvoria aritmetickú postupnost’

ci + 1, cl + 2, . . b — 1,
ktorá obsahuje b — 1 — a členov. Súčet členov postup-

(1)

1
nosti (1) je ~ (b — a — 1) (a + b); je teda

(b - a - l)(a + b) = 2 000 = 24.53.
Zrejme je b — a — 1 < a + b, tj.

(b - a - l)2 < (b - a - l)(a + b) = 24.53 ,

(2)

číže
b - a - 1 < 20]/5 = 44,7. (3)

Pretože a, b sú nepárne čísla, je b — a — 1 tiež nepárne
a podlá (2) je delitelom čísla 24.53. Nepárnymi děli-
telmi čísla 24.53 splňujúcimi podmienku (3) sú len
čísla 5, 25, 1.

Je teda buď
b — a — 1 = 5, a b — 400 (4)

alebo
b — a — 1 — 25, a + b — 80 (5)

alebo

b- a - 1 = 1, a b — 2 000 . (6)
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Z rovnic (4) vyplývá b = 203, a — 197. Z rovnic (5)
dostáváme a — 27, 6 = 53 a z rovnic (6) a = 999, 6 =
= 1 001. Hladané postupnosti sú potom

198, 199, 200, 201, 202,
28, 29, 30, . . ., 50, 51, 52,

1 000.

Skúška. Z rovnic (4), (5), (6) dostáváme nepárne čísla
a < b. Ak vypočítáme súčet členov postupnosti (7) i (8),
přesvědčíme sa o splnění druhej podmienky úlohy. Každý
zo súčtov sa totiž rovná číslu 1 000, ktorčmu je rovný
tiež jediný člen postupnosti (9).

Závěr. Daná úloha má tri riešenia: a = 197, b = 203;
a = 27, b = 53; a = 999, b = 1 001.

(7)
(8)
(9)

2. V prostoru je dáno n rovin, z nichž žádné dvě nejsou
rovnoběžné, žádné tři nejsou rovnoběžné s toutéž přím-
kou a žádné čtyři neprocházejí týmž bodem. Určete,
na kolik oblastí dělí tyto roviny prostor.

(Návod. Předpokládejme znalost této věty: n přímek
roviny, z nichž každé dvě jsou různoběžné a žádné tři

neprocházejí týmž bodem, dělí rovinu na — (n2 + n + 2)
oblastí.)

Řešení. Označme cn počet oblastí, na něž rozdělí
prostor n rovin vyslovených vlastností. Další rovina o
protne původní roviny v n přímkách, které splňují
předpoklady pomocné věty. Rovina q je jimi rozdělena
tedy v bn -= у (n2 + n 4- 2) oblastí. Tolik také z cn
oblastí bylo rozděleno rovinou o ve dvě, tj. rovina q dala
vznik bn novým oblastem. Platí tedy

cn+1 = Cn “Ь b-n • (1)
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Z (1) odvodíme
Cn Cn—1 ~t~ bn— i i

Cn-1 Cn-2 "b bn-2 )

(2)
C2 — C1 4“ ^1 •

Sečtením rovností (2) dostaneme
n-1

+ 2 • (3)
fc=l

и-Х

Je třeba vypočítat ^. Platí
k=l

n—1 n—1

22é* = 2*, + 2* + 2<»-1>- (4)
*=i *=i

Podle známého vzorce je
n-l

"N & = — И (иZ, 2
(5)1).

*=i
7Í-1

Dále vypočteme ^ ^2* Indukcí se snadno dokáže vzorec
A:=X

v

1

2*’-
1

v(v + 1)(2у +1); je tedy
6

n-l

1)(2я - 1). (6)
*=i
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Dosadíme-li z (5) a (6) do (4), dostaneme
71—1

2^bk = ^6 n(jl
1

1)(2n — 1) + — n{n — 1) + 2 (n — 1),
*=1

po úpravě
71—1

1
ьк = — (и — l)(ra2 + w + 6). (7)

&==i

Dosadíme-li ze (7) do (3) — víme, že je cx — 2 — vyjde
— (и3 + 5/г + 6),
6

což je výsledný vzorec. Přesvědčme se o tom znovu induk-
cí. Pro n = 1 dává (8) výsledek c} = 2; dále je podle (1)

(8)

1 1
— (n3 + 5-n + 6) H (и2 -(- n + 2) =
6 2

= — (w3 + Ъпг + S?i -(- 12) = — [(« + l)3 + 5(n -(- 1) + 6] .
6 6

C-n+1

1

3. Časť priamej hrádze rybníka možno považovat’ za
odvěsnu QM pravoúhlého trojuholníka PQM s přeponou
PM. Plavec sa má dostat’ z miesta P v rybníku čo najskór
do miesta M na hrádzi. Známou rýchlosťou vx bude plávat’
priamo do určitého miesta X ležiaceho na hrádzi medzi
<2 a M a potom taktiež známou rýchlosťou v2 poběží
z miesta X do miesta M. Vypočítajte velkost’ uhla
<QPX.

Riešenie (obr. 9). Označme PQ = b, QM = a,
<$'QPX = a. Doba řj potřebná na preplávanie dráhy
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1
PX je — PX, čiže

®i

b
(1)h —

v1 cos a

Pc

a

\

b
4
\

к X

Gh 'M
a

Obr. 9.

1
Doba t2 potřebná na prebehnutie dráhy XM je — XM,

V2
čiže

a — b tg a (2)ř2 —
^2

Je teda celková doba
1

- )tg a b+^. (3)h + t2
vx cos a

Pretože — je konstanta, je 1’avá strana vztahu (3) mini-

^2 ^2

®2
málna právě vtedy, keď je minimálny prvý člen právej
strany, tj. keď je )•minimálny výraz ^ 1 tg a

vx cos a ^2
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1
Po vytknutí kladného čísla — stačí vyšetřovat’ funkciu

©i

1 — — sin a
1 ©i ©2 (4)tg a =

cos a ©2 cos a

Je zrejme v, < г;2, tj. —< 1: a teda 1 —
©2 ©2

Preto je pravá strana vztahu (4) minimálna právě
vtedy, ak je minimálna jej druhá mocnina, t. j. funkcia

1 — — sin a

©i sin a > 0.

)©2 (5)
1 — sin2 a

Vieme totiž, že pre nezáporné čísla p, q platí: p ^ q
právě vtedy, ked je p2 ^ q2.

Ak položíme vo vztahu (5) sin a = я, hTadáme mini-
mum funkcie

(-г-)1
я —

1 - x2

v intervale 0< я < 1. Toto minimum je 1 —
©i

©I<71

a nastane pre я = sin a = —. Eahko totiž dokážeme,
©2

1 < я < 1 platí nerovnost’že pre všetky я z intervalu

уЯ( ©1
©!©2 (6)1 - ~2 *1 — Я2 ©S

я2 > 0, vyplývá z nerovnosti (6): (l — — яУ ^
\ (V, \2 ' ©2 /

- я2) čiže p - я|
Keďže 1 -

(■ -1) <■ 0. Postup mož-
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no obrátit’. Rovnost’ vo vztahu (6) nastane právě vtedy,
keď je x = — .

v2
Velkost’ ostrého uhla <^QPX = a určíme z rovnice

sin a = —. Dobu t = + t2 vypočítáme potom zo
v2

vztahu (3).

4. Čtyřstěn A BCD má vlastnost, že
AB = BC= CD = DA = l.

2 _

Dokažte, že jeho objem je nejvýše ^ j/3. Může nastat
rovnost ?

Řešení. Abychom se mohli stručněji vyjadřovat,
budeme každý čtyřstěn, jehož čtyři hrany, z nichž žádné
tři neleží v rovině, mají délku 1, nazývat jednotkový.

Ukažme nejprve, že má-li jednotkový čtyřstěn Z tu
vlastnost, že odchylka stěn proti některé z obou zbývají-
cích hran není rovna 90°, pak existuje jednotkový čtyřstěn
Zx o větším objemu, než má čtyřstěn Z.

Nechť tedy ve čtyřstěnu ABCD je AB = BC = CD =
= DA = 1 a nechť např. úhel proti hraně AC (tj. úhel
rovin ABD, CBD) není pravý. Objem tohoto čtyřstěnu
je roven — Pv, kde P je obsah trojúhelníku ABD a v

výška spuštěná z vrcholu C na stěnu ABD. Otočme rovinu
CBD okolo přímky BD do polohy kolmé к ABD. Při
tomto otočení přejde bod C v bod C', jehož vzdálenost
v' od roviny ABD je větší než v. Čtyřstěn ABCD je
opět jednotkový a jeho objem je ~ Pv' > Pv3 jak3 3

jsme chtěli ukázat.
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Nechť njmí má jednotkový čtyřstěn AyByCyDy vlast-
nost, že proti oběma zbylým hranám AxCx a BxDx leží
pravé úhly. Potom, označíme-li Sy střed hrany AxCx
a Tx střed hrany BxDx, platí AySy = SyTx = TyBy,
a přitom úsečky AyC13 BXDX a SyTy jsou po dvou navzá-
jem kolmé. Abychom to ukázali, všimněme si předně,
že АуСуТу kolmo půlí úsečku BxDy’3 je totiž AxBy —
— AyD13 takže DyBx _L AyTx'3 obdobně CXBX = CXDX3
takže DyBx _L CyTy. Proto je DyBx kolmá к rovině AXCX T13
která ji půlí. Je tedy AyCyTy kolmá к AXBXDX i CyByDy,
takže trojúhelník AyTyCy je pravoúhlý rovnoramenný
s pravým úhlem při vrcholu Ty. Odtud je AySy = SxTy.
Obdobně ByDySy půlí kolmo úsečku AyC13 odkud
vyplývá SyTy — TyBy. Protože podle Pythagorovy věty
1 = A.B, = РГ5* + S,Tl + TtBl
AySy — SyTy

Уз
=

. Je ihned zřejmé, že jsou-li obráceně p3 q kolmé

mimoběžky, jejichž nejkratší (ke každé z nich kolmá)

příčka *S2r2 (kde S2 je na p, T2 na q) má délku -^,pak
1/3 3

body A2 a C2 ležící ve vzdálenosti -- od bodu S2 na p
o

АЛ1/3, je
УзTyBy = a rovněž CySy = DyTy =

Узa body B2 a Z)2 ležící ve vzdálenosti y od bodu T2 na q5
tvoří vrcholy jednotkového čtyřstěnu, proti jehož zbylým
hranám jsou pravé úhly. Z uvedené analýzy vyplývá, že
takový čtyřstěn existuje a je až na polohu v prostoru
určen jednoznačně. Vypočteme jeho objem. Ve stejném
označení jako nahoře je obsah stěny AyByDy roven

Л3 EJ 1/2 = У2"

3 ' 3 V 3 3B1TI]/T1S? + S,A!ByTy.TyAy
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= Í1Т'Ч2'
takže objem je у'з’^У2 = -^*УЗ. Tím jsme po-

výška spuštěná z Cx na AlBlD1 má délku Cx 7\

dle první části dokázali, že každý jednotkový čtyřstěn
má objem nejvýše —j/3, a právě u jednotkového čtyř-
stěnu, jehož oba úhly proti zbylým hranám jsou pravé,
nastane rovnost.

Jiné řešení (obr. 10). Označme P střed hrany BD;
pak je AP J_ BD, CP JL BD. Označíme-li ještě BP =
— DP = jc, je

AP= CP= l/l - x2.
Pokládáme-li nejprve stěnu ЛЯ!) za konstantní pod-

stavu čtyřstěnu ABCD (tj. x je konstantní), pak tento

(1)
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čtyřstěn má maximální objem у právě tehdy, je-li rovina
BCD kolmá к rovině ABD, neboť pak je výška čtyřstěnu
příslušná ke stěně ABD maximální. Tato maximální
výška má podle (1) velikost ]/1 — x2. Maximální objem
у každého z uvažovaných čtyřstěnů (při konstantním x)
vypočteme vzhledem к (1) podle vzorce

у — у*]/! — X2 . ]/l —
1

(x — X3) .

Trojúhelníky ABD, BCD vzniknou právě tehdy, je-li
x < 1. Máme tedy vlastně vyšetřit maximum funkce (2)
v intervalu 0 < x < 1.

К vyšetření tohoto maxima použijeme obratu, který se
opírá o goniometrický vzorec

sin 3a = 3 . sin a — 4 . sin3 a .

Do (2) dosadíme a = k . sin cp a kladnou konstantu k
určíme tak. aby poměr koeficientů při sin cp a při sin3 cp

3
byl — —. Dostaneme у = k .sin 99

a2 = (2)

(3)

k3 sin3 9?, takže

3 2
4 >odkud k=p

k 1
; je tedy-k3 k2

2
(4)* -

p sin <p .
Po dosazení do (2) vyjde

8
sin3 =у 3]/3

4 . sin39?)
9p

a podle (3)
2

(5)y ~ m ■sin ■
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Probíhá-li л; interval 0 < x < 1, probíhá cp podle (4)
interval 0° < cp < 60°. Máme tedy určit maximum funkce
(5) v intervalu 0° < 3cp < 180°. Je patrné, že toto maxi-
mum nastane pro 3<pm — 90°, kdy je sin Ъ<рт — 1. Odtud

nabývá objem у podle (5) maximální hodnoty
2

_ 2 ]/3
9 У 3 ~ 27

Existenci čtyřstěnu s uvedeným objemem zjistíme
obdobně jako v prvním řešení.

Ут =

2. KATEGORIE В

1. Vyšetřete průběh funkce
j; = ]/|l — *j + 1 — 1 (1)

a načrtněte její graf. Výpočtem rozhodněte, ve kterých
intervalech je funkce rostoucí a ve kterých klesající. Dále
rozhodněte, pro která x nepřekračují funkční hodnoty
číslo 2.

(Poznámka. Bližší vysvětlení týkající se vyšetřování
průběhu funkcí najdete ve svazečku č. 4 z edice Škola
mladých matematiků od Šislera a Jarníka: O fwtkcích.)

Řešení. Z rovnice (1) dostaneme
(y + O2 = íl — *1 + 1 , (2)

tj. pro x ^ 1 dostaneme z (2)
(у + l)2 — 2 — x,

neboli
x-2 = -Су + i)2- (3)
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Pro л: ^ 1 dostaneme z (2)
(У + l)2 = x . (4)

Z rovnice (1) je patrné, že pro všechna jc je у
Graf funkce (1) se tedy bude skládat z částí (oblouků)
parabol o rovnicích (3) a (4), které leží nad osou x.

0.

Parabola P, daná rovnicí (3) má vrchol F, = [2, — 1 ]
a prochází body A = [1, 0], В = [1, —2]. Její vrcholová
tečna t je přímka x — 2 a parabola P, leží v polorovině
tA. Parabola P2 daná rovnicí (4) má vrchol V2 = [0, — 1]
a prochází také body A3 B. Její vrcholová tečna je osa у
a parabola P2 leží v polorovině уA.

У t

RR

A x

s
N

/ \

v: i
\

\
/ч

в

Obr. 11.

Graf dané funkce (1) tvoří ty oblouky obou parabol,
které se stýkají v bodě A (obr. 11).

Funkce (1) je shora neomezená, je definovaná pro
všechna x.
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Z grafu na obr. 11 je vidět, že funkce (1) je pro x ^ 1
klesající a pro x ^ 1 rostoucí. To snadno dokážeme:a)Pro libovolná čísla x, < x2 ^ 1 vypočítáme rozdíl
funkčních hodnot y2 — yv Z rovnice (3) dostaneme

(Уг + l)2 = 2 - x2,

(jh + l)2 = 2 — хг .

Od rovnice (5) odečteme rovnici (6); dostaneme
y\ + 2y2 +1 — (yl + 2yi + 1) = хг — x2 < 0

(5)
(6)

čili

Ы ~ У21) + 2(^2 ~yi)<0.
Po úpravě je
(У2 ~ У1ХУ2 + 3;i + 2) < 0 .

Vzhledem к (1) je y2 > 0, yx >0, a tedy i činitel y2 +
+ 3ů + 2 je kladný; aby byla splněna nerovnost (7),
musí být y2 — yx < 0, což znamená, že funkce (1) je
pro x ^ 1 klesající.

b) Obdobným postupem pro 1 ^ xl < x2 zjistíme, že
pro rozdíl funkčních hodnot y2 a yl platí

3;2 - 3Ů > 0 j

což znamená, že funkce (1) je pro x ^ 1 rostoucí.
c) Dodatková otázka vyžaduje řešení nerovnosti

1/jl - x| + 1 - 1

(7)

2 .

Odtud dostaneme
|1 — x| ^ 8

a po výpočtu jednak pro x 5Í 1, jednak pro x
že je у ^ 2 pro — 7

1 zjistíme,
x ^ 9.

2. Určete nej menší přirozené číslo N, které má právě
15 dělitelů. Určete všechna přirozená čísla menší než N,
která mají více než 15 dělitelů.
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Řešení, a) Je-li přirozené číslo jc rozloženo v součin
prvočinitelů

Pnn
(Pi> p2> • • o Pn jsou navzájem různá prvočísla), pak počet
jeho dělitelů je

x = pxi . р%г (1)

v — (ax + 1)(я2 +!)••• (Pn 1) j

neboť při tvoření dělitelů volíme za exponenty u prvoči-
nitele pk postupně všechna čísla 0, 1, . . ak. Je-li v =
= 15 = 5.3, je n = 2, ax = 4, a2 — 2. Má-li být číslo
N co nej menší, musí být prvočísla pXi p2 co nej menší,
tj. buď px — 2, p2 — 3, nebo px — 3, p2 = 2. Protože
24.32 < 34 .22, je hledané číslo

N = 24.32 = 144 .

b) Budiž x < N přirozené číslo, jehož počet dělitelů
je v > 15; budiž (1) jeho rozklad v prvočinitele. Protože
2.3.5.7 = 210 > 144, je n < 4; je totiž při vzestup-
ném uspořádání prvočinitelů px ^ 2, p2 ^ 3, />3 ^ 5,....

Je-li и — 3, je bud «i = a2 — a3 — 1, v = 8, nebo
= 2, a2 = a3 = 1, v = 12, nebo ax = 3, a2 = я3 = 1,

г> — 16, nebo ax = a2 = 2, a3 = 1, v = 18. Další
případy není třeba zkoumat, neboť např. pro ax = 4
je x > 144; je totiž pp p%* p%* ^ 24.31 . 51 = 240 > 144.
Z téhož důvodu nevyhovuje případ ax = a2 = 2, a3 = 1,
neboť je pl1 р\з p%3 ^ 22 . 32.5 = 180 > 144. Vyhovuje

— 3, a2 = a;i = 1, x — 120.
Je-li n — 2, je buď ax = a2 = 1, v = 4, nebo = 2,

a2 = 1, v = 6, atd. až ax = 5, a2 = 1, v = 12; případy
ax ^ 6, й2 = 1 opět není třeba zkoumat, neboť ^
^ 2G. 3 — 192 > 144. Obdobně probíráme případy ax =
— í?2 — 2^ íZj — 2^ ^2 — 2^ • • — 4, — 2
(zde je v = 5.3 = 15). Případy flj ^ 5, a2 — 2 opět
nepřicházejí v úvahu, neboť ^ 25.32 = 288 > 144.
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Obdobně se zkoumají případy ах— 1, a2 — 3, ax = 2,
a2 — 3. Tím je případ n = 2 vyčerpán. Také n = 1 ne-
dává řešení, neboť počet dělitelů je a1 + 1 a přitom
ax ^ 7, neboť Pi ^ 28 = 256. Hledané x je tedy jediné
číslo x = 120 s 16 děliteli.

3. Je daná sústava rovnic s troma neznámými x, y, z
a s parametrami a, b:

x + ay = b,
у — a2z = 1 ,

az + x = b + 1 .

Určité všetky také hodnoty parametrov a, pre ktoré
má daná sústava nekonečne mnoho riešení.

(1)

Riešenie. Odčítáním tretej rovnice sústavy (1) od
prvej rovnice dostaneme

ay — az — — 1 .

Rovnicu (2) združíme s druhou rovnicou sústavy (1).
Po vylúčení neznámej у a po úpravě dostaneme

a( 1 — a2)z = 1 + a .

Koeficient a( 1 — a2) = a(l — a)(l + a) je rovný nule
právě vtedy, keď je buď a — 0 alebo a — 1 alebo a — — 1.

Ak je а ф 0, 1, —1, dostaneme z rovnice (3)

(2)

(3)

1
z =

a( 1 — a)
Po dosadení za 2 do druhéj a tretej rovnice sústavy (1)
dostaneme x ay, tj. sústava (1) má v tomto případe najviac
jedno riešenie.

Pre а — 0 má sústava (1) tvar
x = b, у — 1, x = b 15

čo však je sústava neriešitelná, pretože b Ф b -\- 1.
(П
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Pre a = 1 má sústava (1) tvar
x у = b} у — z = 1, z x = b -\- l .

Sčítáním druhej a třetej rovnice sústavy (1") dostaneme
x + у = b + 2. Pretože b Ф b + 2, je tiež v tomto prí-
páde sústava (1) neriešitelná.

Pre a — — 1 má sústava (1) tvar
x — У — b, у — z — 1, —я + x = b + 1 .

Odčítáním druhej rovnice sústavy (Г") od tretej dosta-
neme x — у = b, čo je prvá rovnica sústavy (Г").
Sústava (Г") má nekonečne mnoho riešení x = b + у,
y3 z — у — 1, kdej; je lubovolné reálne číslo. Parameter
b može byť přitom volený lubovolné.

Závěr. Sústava (1) má nekonečne mnoho riešení len
v případe, ked a — — 1; b može byť volené lubovolné.

4. Je dána krychle ABCDA'B'C'D' o hraně délky 1.
Sestrojte ve volném rovnoběžném promítání na jejím
povrchu všechny body X, pro něž platí DX —

nejkratší vzdálenost od středu S stěny BCCB' měřená
po povrchu krychle je rovna jedné.

Řešení. Hledané body X náležejí předně kulové
. Plocha Г nemá

žádný společný bod se stěnou ABCD, neboť nejvzdá-
lenější bod této stěny od bodu D je vrchol В a platí
DB

a DCC'D'. Plocha Г protne stěnu ABB'A' v části kruž-
nice, která má střed A a poloměr

(1")

(П

3 •••IV
— a jejichž
2

3
ploše Г, která má střed D a poloměr —

2
— ]/2 < -j. Obdobná tvrzení platí o stěnách ADD'A'
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Tato kružnice protne hranu BB' v bodě M, pro který
platí AM = r, tj.

BM = Уг2
1

2 ’

D' C
/

A
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Bod M je tedy středem hrany BB'. Obdobně protne
kulová plocha Г hrany A'B' a B'C' po řadě v jejich stře-
dech N, P. Stěny, které neobsahují vrchol D, protne Г
ve třech obloucích kružnic (viz obr. 12a).

Žádný z hledaných bodů X neleží ve stěně BCCB',
neboť každý bod stěny má od bodu 5 vzdálenost nejvýše

jV2<I.
Body stěny ABB'A', které mají od bodu 5 nejkratší

vzdálenost 1 měřenou po povrchu krychle, dostaneme
z části sítě tělesa (viz obr. 12b). Bod náleží jednak oblouku
MN3 jednak oblouku URV kružnice (S; 1); přitom R
značí střed stěny ABCD.

Úloha má dvě řešení Xx, X2 naznačená na obr. 12a.

3. KATEGÓRIA C

1. Osobný vlak idúci rýchlosťou vx (m/s) predchádzal
po vedlajšej kolaji rýchlik idúci rýchlosťou v2 (m/s).
Cestuj úci osobného vlaku nameral dobu tx sekúnd,
ktorú trvalo predchádzanie rýchlika. Pozorovatel’ na trati
nameral t2 sekúnd, než ho minul osobný vlak a f3 sekúnd
od okamžiku, keď dostihla lokomotiva rýchlika posledný
vozeň osobného vlaku až do okamžiku, keď minul posled-
ný vozeň rýchlika lokomotivu osobného vlaku.

Vyjádříte poměr rýchlostí vx: v2 pomocou t13 ř2, í3.

Riešenie. Označme dx (v metroch) dížku osobného
vlaku, d2 (v metroch) dížku rýchlika. Rýchlik ide vzhla-
dom na osobný vlak (ktorý ako by stál) rýchlosťou v2 — vv
Z prvej podmienky úlohy vyplývá

d2 (1)— h •

v2 — vx
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Osobný vlak minie pozorovateli za t2 = — sekúnd.
®i

Z tretej podmienky dostaneme: К tomu, aby úplné
predišiel osobný vlak, musí rýchlik urazit’ dx + d2
metrov, a to rýchlosťou v2 — vx. Je teda

, _ dx + d2
to •

v2 - vx
(2)

Dosadíme t2 — ^ a vztahy (1), (2), upravíme:
dx = ®i*2j d2 = (©2 — ©jJřj, + d2 = (©2 — ©ijřg.

Ak sčítáme prvé dve rovnice (3) a spojíme s treťou rov-
nicou, dostaneme

Vxh + (v2 — vx)tx = (v2 — vx)t2
čiže

^i(ř2 h ?3) — v2(t3 řx).
Stadia! vyplývá

h h

t2 — ?! + ř3

®i

čo je výsledná formula.
2. Zvolte si libovolné trojciferné číslo (např. 638).

V zápise tohoto čísla obraťte pořadí číslic a z těchto čísel
vypočítejte nezáporný rozdíl (např. 836 — 638 = 198).
V zápise rozdílu opět obraťte pořadí číslic a tato dvě čísla
sečtěte (např. 198 + 891 = 1089). Vyšetřete, jaká čísla
vycházejí. Svou domněnku přesně vyslovte a dokažte.

Řešení. Zvolené číslo napíšeme ve tvaru
a — 100л: + 10j> + z ;

číslo, které vznikne obrácením pořadí číslic, má v desítko-
vé soustavě tvar

b = ÍOO# + 10_y -f л:.
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Můžeme předpokládat, že x ^ z. (Jinak změníme
označení.) Potom

a — h =. 100(x — z) + (z — x) .

1. Je-li x — z, je a — b ~ 0.
2. Je-li x > z, pak я — x < 0. Abychom zjistili

zápis čísla (1) v desítkové soustavě, užijeme úpravy
1) + 100 + z — x —

1) -J- 9. 10 -f- m,
kde 100 + z — x — 90 -f w, neboli

и + л: — л = 10 .

Protože je z — jc < 0, je x — z — 1 ^ 0. Musíme tedy
rozlišit dva případy: a) x — z — 1 > 0, b) л; — 2 — 1 =
= 0.

a) V tomto případě je а — b trojciferné číslo. Jestliže
pak v zápise čísla (2) obrátíme pořadí číslic, dostaneme

с == 100m + 9 . 10 + (x — z — 1) .

Proto platí vzhledem к (3)
(а — b) + c = 100 (x — z — 1 + u) + 180 -f

+ (u + x - z - 1) = 900 + 180 + 9 = 1089.
b) Je-li x — я — 1 = 0, je а — b dvojciferné číslo.

Podle (3) je и = 9 a dále

(1)

а — b — 100(x — я
= 100(x — z (2)

(3)

c — Юм + 9 = 99 .

Proto platí
(a - b) + c - 99 + 99 = 198 .

Výsledek. Má-li dekadický zápis zvoleného čísla na
prvním a třetím místě tutéž číslici, vyjde nula. Jsou-li
tyto číslice různé, vyjde buď 1089, nebo 198.

3. Jsou dány dvě nesoustředné kružnice kx = ; гх),
&2 = (S2; r2) a kladné číslo q. Sestrojte kružnici x
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o poloměru о, která dělí kružnici ve dvě polokružmce
a je dělena kružnicí k2 ve dvě polokružnice.

C

/ \A £2ч
\/

f/ ^
\ / ^4—

/ \ \
/

\/
ri

IS,
/

\ 'I/
-gri
'W'

\1 \

p-p; \
\ \

x/ /\!
S/VI
Г //'■

1^2-i\

s2\ I

1

/

30 /
w
"Л 2 //В / /\

4

o

Obr. 13.

Řešení. Nechť kružnice *: má střed M (obr. 13).
Označme A, В společné body kružnic kx a x,\ pak je
AB = 2rx. Je AM = BM; tj. ABM je rovnoramenný
trojúhelník*) se základnou AB a rameny délky q. Je proto
nutně

(1)*i < в •

Výška AívS^ trojúhelníku ABM má tedy délku
®i = ]/í?2 — r* > (2)

*) Bod M nemůže náležet přímce AB, neboť v tomto případě by
kružnice kx, x splynuly a x by nedělila kx ve dvě polokružnice.
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kterou můžeme zjistit konstrukcí. Proto bod M leží na
kružnici k[ == z^).

Označme dále C, D společné body kružnic k2 а
takže CD = 2q. Platí CS2 — DS2; trojúhelník CDS2
je tedy rovnoramenný se základnou CD — 2q a rameny
délky r2. Proto je nutně

(3)Q < r2 .

Pro výšku MS2 = v2 trojúhelníku CDS2 platí
^2 = Mr22 - Q2; (4)

bod Af pak leží na kružnici k'2 = (S2\ г>2).
Je bezprostředně patrno, že kružnice и = (M; q)

splňuje požadavky úlohy (Aí je společný bod kružnic k[
*K)-.

Existence řešení a jejich počet závisí na společných
bodech kružnic k[, k2. Tyto kružnice mají aspoň spo-
léčný bod, tj. úloha má aspoň jedno řešení právě tehdy,
platí-li pro vzdálenost d = SXS2 nerovnosti

\v2 — vx\ ^ d ^ v2 + v1
neboli vzhledem к (2) a (4)

|1/V| - é‘ - | á d S + у г» - г?. (5)
Kružnice k[y k2 existují právě tehdy, platí-li (1) a (3),
cíli je-li

(6)Гi < Q < Г2.
Nerovnosti (5), (6) vyjadřují podmínku řešitelnosti
úlohy.

4. Je daná коска ABCDA'B'C'D' s hranou dížky 1.
M je střed hrany A'B\ Priamkou C'M je vedená rovina q,
ktorá rozděluje kočku na dve telesá. Teleso obsahujúce

1
vrchol В má objem — . Určité, v akej vzdialenosti od3
vrcholu В přetíná rovina q hranu AB.
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Riešenie (obr. 14). Označme N střed hrany AB> P
střed strany CD.

Rovina MNCC oddělí od коску trojboký hranol r =

= NBCMB'C', ktorého objem je j • j • 1 . 1 =
1

4 ’

C
:

/I
1 /7

//B'i ? /
/// /

/ // /

/ / /
г

/ Dl c
/

/ /
# 1/ /

\

А X N 1
? B

Obr. 14.

Rovina AMCP oddělí od kpcky teleso zložené z hranola т
a z trojbokého šikmého hranola ANMPCCktorého
objem je • 1.1=-^-. Objem odděleného telesa
je teda v tomto případe ^ —

Zvolme bod X medzi bodmi A a N г označme BX = x.

Je teda

2 *

1
(1)— < x < 1 .

2
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Objem telesa odděleného rovinou q = MXC vypo-
čítáme ako v predchádzajúcom případe. Rovina přetne

hranu CD v bode Y a platí zrejme CY — NX =

Ďalej je Д XNM ^ Д YCC. Oddělené teleso sa skládá
z hranola r a zo šikmého hranola XNM YCC', ktorého

1
x

2 '

objem je -i^x — -ij . 1 . 1 = -i- (2x — 1). Objem od¬
děleného telesa je teda

— + — (2x — 1) .
4 4

Podlá podmienky úlohy je V = -x■. Ak dosadíme do (2),d 2
x = —. Tento

3
kořeň vyhovuje aj nerovnostiam (1) a dává teda riešenie
danej úlohy.

(2)V =

dostaneme rovnicu pre x, ktorej kořeň je

4. KATEGORIE D

1. Když jsem vkročil na náměstí, odbíjely právě
hodiny na radnici 8 hodin, kostelní hodiny však už
ukazovaly 802. Když jsem přešel náměstí a dorazil к zámku,
bylo na zámeckých hodinách teprve 801, ale na kostelních
hodinách už 806. Mám však už s hodinami v našem městě
své zkušenosti: zámecké nikdy nejdou napřed, radniční
zato vždycky jdou napřed a čas na kostelních hodinách
se neliší od správného času nikdy o víc než o 3 minuty.
Určete (na minuty), jaký byl správný čas, kdy jsem vkročil
na náměstí.

Řešení. Z údajů kostelních hodin je vidět, že od vstupu
na náměstí do příchodu к zámku uplynuly 4 minuty.
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Tudíž v okamžiku vstupu na náměstí bylo na zámeckých
hodinách 757 h.

Zámecké hodiny nikdy nejdou napřed, takže ukazují-li
757, jsou možné (uvažujeme-li jen celé minuty) následující
časové údaje

757, 758, 759, 8°°, 801, ....

Radniční hodiny jdou vždy napřed, a proto když
odbíjejí 8 hodin, ještě 8 hodin není a jsou možné (uva-
žujeme-li jen celé minuty) následující časové údaje:

75í), 758, 757, 756, ....

Čas na kostelních hodinách se neliší od správného času
nikdy o víc než o 3 minuty, tudíž když tyto hodiny ukazují
802, jsou možné (uvažujeme-li jen celé minuty) následující
časové údaje

759, 8°°, 801, 802, 803, 804, 805.
Porovnáme-li možné časové údaje všech tří hodin, tj.

množiny (1), (2) a (3), vidíme, že správný čas (na minuty)
byl 759 hod. Tento výsledek lze také dostat pomocí gra-
fického znázornění (obr. 15).

(1)

(2)

(3)

?5S 7S6 7ът 7sa 759 800 qOÍ q02 q03 qO4 g05 Q06 qO?
Zámek —♦—

Radnice

Kostel + к

Obr. 15.

2. Oldo si kontroloval po hodině úlohu z písomky:
„Mali sme upravit’ výraz

x2 — 3
( 6x-7

x + 1 2x — 1
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V čitateli mi vyšiel nějaký mnohočlen ax3 + bx2 + cx +
+ d\ koeficienty si už nepamátám. V menovateli bolo
2л;2 + x — 1. Vyšla mi dobře skúška pre x — 0, 1 a 2,
ale pre x — 3 už nie. To vyšlo na 1’avej straně 3,7 a na
právej 4.cc

Dokážete z týchto údajov zistiť koeficienty a, b, c, d
a rozhodnúť, či Oldovo riešenie bolo správné?

Riešenie. Rozriešime znovu Oldov příklad:
x2 - 3 6x - 7

_ (x2 - 3)(2x - 1) + (x + 1) (6x - 7)
x + 1 2x — 1 (x T" l)(2x — 1)
V čitateli vyjde po vynásobení a sčítaní

2x3 + 5x2 — 7x — 4 ,

v menovateli vyjde skutočne 2x2 + x — 1, ako tvrdil
Oldo. Pre x = 0 málo vyjsť na 1’avej i právej straně číslo 4.
Oldovi vyšlo — d. Pretože mu skúška súhlasila, bolo
d — —4. Pre x = 1 málo vyjsť —2. Oldo dostal

a + b + c — 4
2

Pretože mu skúška súhlasila, bolo
a + b + c — 4

= -2, tj.
2

(1)я + b + c — 0 .

Pre x = 2 málo vyjsť 2. Oldo dostal
8a + 4b + 2c — 4

9

Z toho, že mu skúška súhlasila, po úpravě dostáváme
4a + 2b + c = 11.

Konečne pre x = 3 málo vyjsť 3,7. Oldo dostal
27a + % + 3c — 4

(2)

= 4,
20
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t. j. po úpravě
(3)9a + 3b + c = 28 .

Ak dosadíme z (1) c = — a — b do (2) a (3), dostaneme
sústavu

3a + b = 11,
4a + b = 14 .

Odčítáním prvej rovnice sústavy (4) od druhej vyjde a —
= 3, potom z prvej rovnice sústavy (4) máme b — 2
a zo vztahu (1) je c = —5.

Oldov nesprávný výsledok bol teda
3r* + 2jc2 — 5jc — 4

(4)

2jc2 + x — 1

3. Je daný trojuholník ABC. Vyšetříte geometrické
miesta bodov X tohto trojuholníka, pre ktoré platí

AX^BX^CX. (1)
Pomocou velkostí stráň a uhlov trojuholníka ABC

vyjádříte podmienky pre to, aby
a) geometrickým miestom bodov X bol páťuholník;
b) geometrickým miestom bodov X bol šesťuholník;
c) geometrické miesto bodov X obsahovalo právě

jeden bod;
d) geometrické miesto bodov X neobsahovalo žiadny

bod.

Riešenie (obr. 16). Geometrickým miestom bodov X,
pre ktoré platí napr. АХ ^ BX, je polrovina o3B, kde o3
je os úsečky AB. Pretože sa osi stráň trojuholníka ABC
pretínajú v jedinom bode O, tvoří geometrické miesto
bodov X, ktoré splňujú podmienku (1), dutý uhol w,
ktorý je spoločnou častou polrovín o3B a oyC. Hladané
geometrické miesto je teda spoločnou častou trojuholníka
ABC a uhla co.
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Vieme, že poloha vrcholu O, t. j. středu opísanej kružnice
vzhladom na priamku BC závisí na tom, či uhol <£BAC
je tupý, pravý alebo ostrý. Rozlišujeme preto tieto
případy:

1. Uhol <£BAC je tupý. Potom O leží v tej polrovine
a vyťatej priamkou BC, ktorá neobsahuje bod A. Pretože
aj obe ramená uhla co ležia v polrovine o, leží celý uhol co
v polrovine o-, takže hladané geometrické miesto bodov
neobsahuje žiadny bod.

2. Uhol <£BAC je pravý. Bod O leží potom na straně
BC, obe ramená uhla co sú opáť v polrovine a. Bod O je
preto jediným bodom hladaného geometrického miesta
(obr. 17).

3. Uhol <£BAC — oc je ostrý. Potom bod O leží v tej
polrovine vyťatej priamkou BC, ktorá obsahuje vrchol A.
Hladané geometrické miesto bodov potom obsahuje střed
5 strany BC a ďalšie body blízké к bodu S, teda aspoň
dva rožne body. Z toho už vyplývá, že případ d) v úlohe
nastane právě vtedy, keď a > 90° a případ c) nastane
právě vtedy, keď a = 90°. Aby sme našli riešenie v prí-
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padoch a) a b), všimnime si, kedy je spoločnou častou
1’ubovolného trojuholníka a lubovolného dutého uhla
páťuholník a kedy šesťuholník. Pretože strany tejto
časti, pokial’ je to mnohouholník, sú časťami troch stráň
trojuholníka a dvoch ramien uhla, je týchto stráň najviac
páť. Nikdy teda nevznikne šesťtiholník. Páťuholník
vznikne právě vtedy, keď jeden vrchol trojuholníka
leží vo vnútri uhla, zostávajúce dva mimo uhla tak, že
úsečka, ktorá ich spája, přetne obe ramená uhla.
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Vráťme sa к případu ostrého uhla <$:BAC. Pretože co
je spoločná časť polrovín OjCa osB a pretože В nie je
v огС, A nie je v o3B, nastane případ b) právě vtedy, keď
C je v o^B číže a < b (C je vždy v огС) a strana AB
přetne obe ramená uhla co (obr. 18). Strana AB přetne
rameno obsažené v o3B právě vtedy, keď O leží v tej
polrovine vyťatej priamkou AB, ktorá neobsahuje bod C.
Potom však už AB přetne aj druhé rameno. Případ a)
nastane teda právě vtedy, keď uhol у je tupý a uhol a
je menší než uhol /? alebo a < b (uhol a je potom skutočne
ostrý).

Závěr. Podmienky, kedy nastanú jednotlivé případy,

a) у > 90°, a < /5 ;
b) nikdy;
c) a > 90°;
d) a = 90°.
4. Je dán čtvrtkruh SBC s poloměrem SB — SC — r;

A je takový bod oblouku BC, pro který platí <£ASB =
= 60°; X je libovolný bod úsečky SC (obr. 19).

a) Vyjádřete obsah P plochy omezené úsečkami BX,
AX a obloukem AB pomocí délky jc = SX.

b) Zjistěte, pro kterou hodnotu x je obsah P roven
polovině obsahu čtvrtkruhu SBC, a porovnejte tuto
hodnotu x s délkou oblouku BC.

Řešeníi (obr. 19).
a) Pro obsahy obrazců platí (podle obrázku)

P = СABX) - (SAB) + (SAX) - (SBX).
Podle známého vzorce

sú:

(1)

1
(SAB) = j 7zr2. (2)
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á
'X R Сх

ф

Obr. 19.

Trojúhelník ASX má stranu SX = x а к ní kolmou výšku
AR =

1
— r; proto

1
(3)(SAX) = -rx.

4

Pro obsah trojúhelníku SBX platí

(SBX) = jrx-
Spojíme-li (1), (2), (3), (4), dostaneme

(4)

11
(5)P — — izr2 — — rx .

6 4

b) Z podmínky úlohy plyne
1 11

— 7ГГ2 ГХ = — 7ГГ2 j

6 4 8

79



neboli
1 1

— rx = 7ir2
244

a odtud
1

X — — Tir .

6

Délka л: je tedy třetina délky oblouku BC, tj. délka oblou-
ku AC.

%
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IV. Úlohy II. kola

1. KATEGORIE A

1. Dokažte, že o objemu V čtyřstěnu ABCD platí
1

V ^-AB.BC. CD.
6

1
Řešení. Objem V daného čtyřstěnu je roven V —

kde P je obsah trojúhelníku ABC а г; je velikost výšky
čtyřstěnu spuštěné z vrcholu D na stěnu ABC. Je
však dále

1
■—AB . v',
2

kde v' je velikost výšky trojúhelníku ABC, spuštěné
z bodu C.

Protože v' je vzdálenost bodu C od přímky AB, je
v' < BC,

P =

tj.
1

P^~AB.BC.
2

Dále je v vzdálenost bodu D od roviny ABC3 takže
v ^ CD.

Odtud
11

- AB.BC.CD,
6

V = -Pv <:
3

jak jsme měli dokázat.
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2. Je dána soustava rovnic
|1 — x\ = a, \x — y\=b, \y — 1| = c,

kde a, b, c jsou daná přirozená čísla.
Dokažte, že soustava (1) má buď dvě řešení, nebo je

neřešitelná. Určete podmínku řešitelnosti.
Řešení. Pokládejme čísla 1, x, у za souřadnice tří

bodů přímky p; tyto body označme
A = [y],B=[1], C=[x].

Pak je podle (1)
ВС — a, CA = b, AB = c .

Protože a, by c jsou přirozená čísla, jsou А, В, C tři různé
body přímky p.

Ze tří různých bodů přímky právě jeden odděluje oba
zbývající. Je-li tedy soustava (1) řešitelná, platí právě
jeden ze vztahů
C odd. ABy A odd. ВС, В odd. CA,
neboli právě jedna z rovností
АС + CB = AB, BA + АС = ВС, CB + BA = CA,

(1)

(2)

(3)

tj. vzhledem к (3) právě jedna z rovností
a A~ b = c, b с — а, с -C cl — b. (4)

Platnost právě jedné z rovností (4) je tedy nutná pod-
minka pro řešitelnost soustavy (1). Dokážeme, že tato
podmínka je také postačující.

Nechť platí např.
ci ~i~ b — c .

Na libovolné přímce p sestrojíme tři body А, В, C tak, aby
pro ně platily vztahy (3) a (5); viz obr. 20. Dále sestrojíme

(5)

$JL
PcA в

Obr. 20.

82



oba body přímky p, pro které platí ВРг — BP2 = 1.
Jsou-li yx, хг po řadě souřadnice bodů A, C v soustavě
s počátkem Px a jednotkovým bodem B, pak platí

c — AB - \y1 — 1|, a = BC = |1 — jcx|
a vzhledem к (3)

l*i —yi\ = AC = b .

Čísla xí} yx jsou tedy řešením soustavy (1). Druhé řešení
dá bod P2.

Závěr. Soustava (1) je řešitelná právě tehdy, platí-li
jedna z rovností (4). Je-li řešitelná, má dvě řešení.

3. Vypočítajte súčet
sin 1sin 1 sin 1

+ . . . +
cos 0. cos 1 cos 1. cos 2 cos 2.cos 3

sin 1

cos (n — 1) COS n 5
kde n je dané prirodzené číslo.

Riešenie. Upravíme člen súčtu
sin 1

(1)
cos (k — 1). cos k

pomocou rovnosti
sin 1 = sin [k — (k — 1)] = sin k . cos (k — 1) —
— cos k . sin (k — 1) . (2)
Ak dosadíme z (2) do (1), dostaneme

sin 1

cos {k — 1) cos k
Členy (3) máme sčítat’ pre k — 1, 2,. . ., n. HTadaný súčet

= tg k — tg (k — 1) . (3)
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je teda s = (tg 1 - tg 0) + (tg 2 —tgl) + (tg 3 — tg 2) +
+ ... + (tg n — tg (n — 1)),
t.j.

s = tg n — tg 0 = tg n .

Poznámka. Dá sa dokázat’, že cos k Ф 0 pre každé
prirodzené číslo k. Ak by totiž pre niektoré prirodzené
číslo k platilo cos k = 0, bolo by

~ + ?.n (/ celé).k =

2k
Stade by sme dostali 7t = , čo však nic je mož-1 + 21
né, pretože те je číslo iracionálně.

4. Je daná priamka p a rovina n kolmá к p. Na priamke
p sú dané dva rožne body A, B, ktoré ležia v tom istom pol-
priestore s hranicou n. V rovině л je daná priamka q mi-
mobežná s p.

Vyšetrite geometrické miesto priesečníkov výšok troj-
uholníkov ЛВХ, ked bod X prebieha priamku q.

Riešenie. Výška každého z trojuholníkov ABX
spustená z vrcholu X má tú istú patu M. Bod M je
priesečníkom priamky p s rovinou л.

Rozoznávajme dva případy:
a) bod M splynie s niektorým z bodov A, В, napr.

M = B;
b) M^ A, В a pri vhodnom označení odděluje napr.

bod В body A a M.
V případe a) sú všetky trojuholníky ABX právo-

uhlé s pravým uhlom 4:ABX. Priesečník výšok V
v každom z nich je V = B. HTadané geometrické miesto
bodov pozostáva teda z jediného bodu B.
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Případ b) (obr. 21). Všetky priesečníky výšok V ležia
na priamkach MI,t.j.v rovině Mq = n. Pretože <£ABX
je tupý (i\BMX je pravoúhlý s pravým uhlom <^BMX)3
odděluje bod M body V a X. Bod В je priesečníkom
výšok trojuholníka AVX. Preto je <£XAM = <£MVB
a ďalej

(1)/\AMX oo Д VMB .

H
\

\
\
\
\
\
\
\

A

''4') \\
\

\ \
\ \\

v
жObr. 21.

Zo vztahu (1) odvodíme AM: VM — XM: BM číže
MX . MV = MA . MB = k , (2)

kde k je kladná konstanta.
Obr. 22 znázorňuje situáciu v rovině n. Priamka MX0

je spoločná kolmica mimobežiek p, q. Bod V0 je priesečník
výšok trojuholníka ABX(). Preto je podlá (2)
MX0 . MV0 = k3 tj. MX0 . MV0 = MX . MV číže

MX: MX() = MV0: MV .

Zo vztahu (3) vyplývá podlá vety s и s o podobnosti
(3)
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trojuholníkov, že je i\MXX0 ~ /\AÍV()V. Preto je uhol
<£AÍVVo pravý a bod V leží podlá obrátenej Thaletovej
vety na kružnici zostrojenej nad priemerom MFn.

Pretože každá priamka zvázku (Aí) s výnimkou do-
týčnice kružnice * v bode M obsahuje po jednom bode X
i V, vyplnia body V kružnicu * bez bodu Aí.

Z hr nu tie. V případe a) je hladaným geometrickým
miestom množina obsahujúca jediný bod M, v případe
b) je to kružnica я bez bodu Aí.

2. KATEGORIE В

1. Platí-li o reálných číslech a, b3 c3 že |a| ^ 13 \b\ ^ 1,
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\c\ ^ 1, potom je
ab + clc -f- bc ^ — 1 .

Dokažte a najděte nutnou a postačující podmínku pro
to, aby nastala rovnost.

(1 + a)( 1 + b)(l + c) + (1 - a)( 1 - *)(1 - c) ^ 0,
neboť oba sčítanci jsou nezáporná čísla. Vynásobením,
úpravou a dělením dvěma dostáváme

ab ac + be + 1 ^ 0
neboli

ab + ac + bc ^ — 1 ,

jak jsme měli dokázat.
Rovnost nastane v tom a jen v tom případě, je-li

zároveň
(1 + e)(l + *)(1 + c) = 0

a

(1 fl)(l - 6)(1 - c) = 0 .

To bude splněno, bude-li aspoň jedno z čísel a, b, c
rovno 1 a zároveň aspoň jedno rovno 1.

2. Je daná funkcia
1 + x2 1 + X2

2x 2x

1
У =

1 4- x2 1 + x2
2x 2x

Zistite jej obor definície a zostrojte jej graf.
Riešenie. Najprv zistíme obor definície danej funkcie.

Z definície druhej odmocniny vyplývá nutnost’ splnenia
vzťahov

1 + x2
±1^0,

2x
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ktoré sú splněné len pre x > 0. Kedze pre kladné jc je
nezáporným číslom aj výraz pod „velkou odmocninouCÍ,
pričom menovatel je rózny od nuly, je daná funkcia
definovaná pre

(1)x > 0 .

Upravme teraz zlomok

1Í4f+l - 1/ 2*

1 + X2
- 1

У 2x

-V *

1 + x2 1 + X2
+1 i- - 1

2x

У *
(1 + xf (1 — л:)2

V ь
Použitím známej vety, že ]]x2 = \x\, dostaneme z daného
zlomku tvar

(1 + xf ř(l - X)2
2x

|1 + x\ — |1 — x\
|1 + x\ + |1 — x\

Z definície absolútnej hodnoty vyplývá pre л: ^ 1:
1 + jc, |1 — x| = x — 1, teda

1 + x + 1 — x

|1 + *1
|1 + *1 — íl — x\ 1

(2a)x 5|1 + x\ + |1 — x\

pre 0 < x < 1 je }1 Ч-Jej = 1 +л:,[1 —-л:| = 1 — л:
a teda

1 + х — 1 + л;

1 -(- х — 1 “I- х|1 + ЯI — |1 — x\ (2b)- X .

1 “h x -f~ 1 — x|1 + *1 + 11 x\
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Ak použijeme vztahy (1) a (2), dostaneme:

|Д • = 1, pre 0 < x < 1 j q у =pre x 1 je у =

= ]/x2 = \x\ = X .

Grafom danej funkcie je teda lomená čiara znázorněná
na obr. 23.

/

y=7
1■

У = *

X

O 1

Obr. 23.

3. Do polgule s polomerom 1 třeba vpísať tri zhodné
plochy gulové tak, aby sa každé dve zvonku dotýkali
a každá z nich aby sa dotýkala jednak podstavy polgule
a jednak jej hraničnej plochy gulovej. Vypočítajte polo-
mer vpísaných gulových ploch a dokážte, že úloha je
riešitelná.

Riešenie. Predpokladajme, že riešenie existuje. Označ-
me O střed polgule, S13 S2, S3 středy vpísaných gulových
ploch, r ich poloměr. Body 51} S2, S3 tvoria vrcholy
rovnostranného trojuholníka so stranami dížky 2r.
Ak je 5 střed tohto trojuholníka, potom platí d — SSX =
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- SS2 = SS, = y~ • Уз = -|r уз. Rovina 5X05
přetne polgulu v polkružnici (obr. 24), prvú gulovú
plochu v kružnici s polomerom r a stredom Sv Táto
kružnica sa dotýká polkružnice v bode T. Pretože body
T3 S13 O ležia na priamke, platí

г(1+У1+1)=г(1+¥)1 = r + ]/r2 + d2
Stade

У21
= ~ (1/21 — 3).

4

1
r =

У21 7

3-1
2 _

Ak zvolíme r takto a d^-^гУЗ, potom existuje

1 +

kružnica s polomerom r ako na obr. 24. Potom možno
zostrojiť tri gulové plochy požadovaných vlastností.

T1 1

>4=4?
I!r

■

\
^1

"0
1

Obr. 24.

4. Je dána kružnice k se středem S. Dokažte, že každý
bod Z ^ S jejího vnitřku je středem kružnice vepsané
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trojúhelníku SXY, jehož vrcholy X, У leží na kružnici k.
Vyjádřete poloměr této vepsané kružnice pomocí r,
SZ.

Řešení. Je-li bod Z středem kružnice vepsané troj-
úhelníku SXY, jehož vrcholy X, Y leží na kružnici k
a který je proto rovnoramenný, zavedeme označení podle
obr. 25: U je střed úsečky XY a zároveň bod dotyku

kružnice vepsané trojúhelníku SXY, F je pata kolmice
z bodu Z na přímku S Y, a tedy také bod dotyku kružnice
vepsané trojúhelníku SXY. Platí tedy

SZ = d, SY=r, ZU=ZV = x,

kde x značí poloměr vepsané kružnice.
Z podobnosti trojúhelníků

ASYUcnd A5ZF
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dostaneme: SY: SU — SZ: S F, neboli
r : (d -f x) = d: ]/52 — x2,

neboli

r ]/d2 — x2 = d{d + x) .

Odtud dostaneme umocněním

(1)

r\d + x){d - x) = d\d + xf .

Protože je d + x ф 03 můžeme jím dělit rovnici (2)
a vyjde

(2)

r\d — x) — d2{d + x)
a odtud po jednoduché úpravě

, r2 - d2
x = d .

r2 + d2
(3)

Zvolme nyní libovolný bod Z vnitřku kružnice k, pro
který platí SZ — d < r. Kolem bodu Z opišme kružnici
v. poloměrem л, který je dán vzorcem (3). Ze vzorce (3)
vyplývá, že je x < d. Proto leží bod 5 vně kružnice
Sestrojíme rovnoramenný trojúhelník SX'Y' se základ-
nou X' Y' tak, aby ^ byla kružnice jemu vepsaná. Pak
opíšeme kolem středu S kružnici k! poloměrem SX' =
— SY' — r'. Podle vzorce (3) pak platí

7 Г “
x = d —

- d2
(4)

r'2 + d2

Porovnáním (3) a (4) dostaneme
(r2 - d2)(r'2 + d2) = (r'2 - d2)(r2 + d2)

a odtud r2 = r2, tj. r' — r. Kružnice k, k’ tedy splynou,
zvolený bod Z je středem kružnice vepsané jednomu
z trojúhelníku SXY a tvrzení je dokázáno.
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3. KATEGORIE С

1. Trojúhelník o obsahu 50 cm2 má jedinou stranu
delší než 10 cm. Určete délku této strany.

Řešení. Nechť a, b, c jsou délky stran daného troj-
úhelníku a nechť c je větší než 10 cm. Je pak a sí 10 cm,
b ^ 10 cm. Obsah P trojúhelníku je

p 1P — ~ av ,

2

kde v je velikost výšky kolmé к straně a, vycházející
z vrcholu A. Protože v je zároveň vzdálenost bodu A od
strany BC3 platí v ^ b = AC.

Je proto
1 1

P = — av ^ — ab ^ 50 cm2.
2 2

' Avšak víme, že P = 50 cm2. Je proto v = b, tj. strana b
je kolmá к a, dále a = 10 cm, b — 10 cm. Odtud plyne,
že c = ]/a2 + b2 = 10]/2 cm 14,14 cm, což je hledaný
výsledek.

2. Je daný pravý uhol <£ABC. Vrchol X pravoúhlého
trojuholníka ABX sa pohybuje po priamke BC. Y je
střed jeho odvěsny BX3 Z pata výšky na přeponu AX.
Vyšetříte geometrické miesto bodov Z, pre ktoré platí
<ZBY ^ <£XZY.

Riešenie. Nad priemerom AB zostrojíme kružnicu
k so stredom S. Podlá obrátenej Thaletovej vety patří
bod Z kružnici k. Ak označíme a velkost’ uhla <£XAB,
je <$iAXB = 90° — a (z pravoúhlého ДАВХ), <£ZB Y—
— a (z pravoúhlého J\BXZ — pozři obr. 26). Ďalej

93



máme podia obrátenej Thaletovej vety z pravoúhlého
/\BXZ vztahy XY — YB = YZ, t.j. z rovnoramenného
t\XYZ dostaneme

<£XZY = <£AXB = 90° - a .

Podmienka $:ZBY ^ ^XZY je teda ekvivalentná
s nerovnosťou

a ^ 90° - a ,

a ^ 45° .

Stredom S kružnice k vedieme priemer PQ ||J3C.

čiže
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Pretože predchádzajúci postup možno obrátit’, je hlada-
ným geometrickým miestom bodov Z polkružnica k13
ktorá obsahuje bod A. Bod A však do hladaného geo-
metrického miesta nepatří (obr. 27).

/
/

/
/

P/
/

Z,
V

7

Á S В

*7
c

a

Obr. 27.

3. Přirozená čísla 1, 2, 3, . . ., 12 jsou rozdělena
do čtyř skupin po třech číslech. Součet čísel každé této
skupiny je nejvýše 20. Dokažte, že v žádném takovém
rozkladu se nevyskytuje skupina (5, 6, 7}.

Řešení. Předpokládejme, že v některém rozkladu je
skupina (5, 6, 7}. Skupina (5, 6, 7} dává součet 18.
Proto každá ze tří zbývajících skupin dává součet 20.
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Tyto tři skupiny dávají totiž dohromady součet 78 —
- 18 = 60.

Vyšetřme, v které skupině se vyskytuje číslo 12. Toto
číslo se může vyskytovat jen ve skupinách

{1,7,12}, {2,6,12}, {3,5,12}.
Každá z těchto tří skupin však má společný prvek se
skupinou {5, 6, 7}, což není možné.

4. Řešte soustavu rovnic s neznámými x, у
ах + у = 1 ,

l*| + У = <*»
kde a je parametr. Diskutujte řešení vzhledem к para-
metru a.

Řešení. Rozlišíme dva případy: a) x ^ 0, b) x
a) V případě a) má soustava (1) tvar

ах + у = 1 ,

x + у = а .

Odečtením obou rovnic (2) dostaneme
{a — l)x = 1 — a .

Je-li а Ф 1, plyne z rovnice (3) x = — 1; to však nevede
v případě a), kdy je x ^ 0, к žádnému řešení soustavy
(1). Je-li a = l, obsahuje soustava (2) dvě totožné
rovnice x + = 1. Jejich řešení jsou všechny dvojice
x, 1 — x , kde x ^ 0.

b) V případě b) má soustava (1) tvar
ах + у = 1 ,

—x -}- у = а .

Odečtením obou rovnic (4) dostaneme
(a + l)x = 1 — a .

(1)

0.

(2)

(3)

(4)

(5)
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1
a dále z druhé1, plyne z (5) jc

1 + a2
i H- a

Je-li а Ф

rovnice (4) у =

1 + a

Dvojice čísel
1 + a2
1 + a

1 — a

(6)x — - ,

1 + a

je řešením soustavy (1) právě tehdy, když je л; ^ 0,
tj. buď 1 — a^O, l+a<0, nebo 1 — a ^ 0, 1 +
+ a > 0. První případ nastane pro a < — 1, druhý pro
a ^ 1. Pro a = 1 dávají vzorce (6) řešení 0; 1, které jsme
už dostali mezi řešeními odstavce a).

Pro a — — 1 se skládá soustava (4) z rovnic -x-\-y =
= 1, — x ~\~ у = — 1, které si odporují; pro a = — 1
je tedy soustava (1) neřešitelná.

Shrnutí je dáno tabulkou:

У =

i' - 1 ^ a < 1a < — 1 a > 1a = 1

Řešení jediné, dané
vzorci (6)

žádné nekonečně
mnoho řešení
x, 1 — x;

jediné, dané
vzorci (6)

4. KATEGORIE D

1. Je dán čtverec ABCD o středu S. Tento čtverec
otočíme kolem středu S o ostrý úhel velikosti q> do polohy
A'B'C'D' tak, že strany B'C' a C'D' protnou stranu BC
v bodech X a Y.

Vyjádřete velikost úhlu <£XSY.
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Řešení (obr. 28). Z textu úlohy plyne
<£C'SC - <P. (1)

Dále platí
<£C'SB = <£CSB - <£C'SC = 90° — cp . (2)
Trojúhelník SCC je rovnoramenný, neboť SC = SC.

Ze souměrnosti tohoto trojúhelníka podle osy úsečky CC
a ze vztahu

SC'Y= <£SCY = 45°

plyne, že bod Y leží na ose souměrnosti Д SCC'. Je tedy
podle (1)

<£ YSC = ?-.
2

(3)
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Ze souměrnosti plyne dále
1

<£YSC' =-q>.
2

Polopřímka SY je tedy osou úhlu CSC'. Obdobně doká-
žeme, že polopřímka SX je osou úhlu C'SB.

Velikost úhlu C'SB je podle (2) 90° — y, takže

|(90°-у).
Pro velikost hledaného úhlu tedy platí

= ^cXSC'+ <£C'SF= 45° -

<£XSC =

1 1
= 45°.— <P + —q>

2 2

2. Na obrázku (obr. 29) je štvorec ABCD so stranou
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dížky 9 cm a 8 zhodných štvorcov Ql3 Q2, . . ., Q8.
Štvorec Qx prevedicme na štvorec Q23 na Q3, atď.
až <2e na <2, a to vždy otočením okolo toho spoločného
vrcholu oboch štvorcov, ktorý leží na obvode štvorca
ABCD. Spósob otáčania je naznačený vo štvorci ABCD
na obr. 29.

a) Zostrojte čiaru, ktorú pri všetkých týchto otočeniach
prebehne vrchol X.

b) Vypočítajte jej dížku a porovnajte ju s dížkou kruž-
nice opísanej a s dížkou kružnice vpísanej štvorcu ABCD.

Riešenie. a) Čiara je na obr. 29 vyznačená hrubo.
Skládá sa zo štyroch štvrťkružníc s polomerom 3 a z dvoch
štvrťkružníc s polomerom 3 j 2.

b) DÍžka čiary je (v cm) d — 4 • ^ + 2 . ■ - ,

číže

d = 6ti + Зтг У2 = Зтг (2 + 1/2) = 10,24тг .

DÍžka dy kružnice opísanej štvorcu ABCD je

dx = 7т9|/2^ 12,7 ti,

dížka d2 kružnice vpísanej štvorcu ABCD je
d2 = 971.

Podlá vzťahov (1), (2), (3) je teda

(1)

(2)

(3)

3. Je daná tabulka prirodzených čísel, ktorá připomíná
tabulku na tikete Sportky:
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1 Щ 3 4 5 6 7
8 9 10 jUj 12 13 14

Щ 16 17 18 19 20 21
22 23 24 25 26 Щ 28
29 30 31 32 33 34 Щ
36 37 38 39 Щ 41 42
43 44 |45| 46 47 48 49

Ак vyberiemc z tabulky sedem čísel tak, aby sme z kaž-
dého riadku i z každého stípca vybrali jediné číslo, potom
je súčet vybraných čísel vždy ten istý. Dokážte. (Jeden
možný výběr je vyznačený na tabulke.)

Riešenie. Postup vyberania čísel si móžeme před-
stavit’ takto: Na každé pole prvého riadku položíme jednu
mincu. Potom jednu mincu necháme v prvom riadku
a ostatné posunieme v smere stípcov tak, aby v každom
riadku ležala právě jedna z nich. Čísla, ktoré sú zakryté
mincami, spíňajú potom požiadavky výběru.

Keď mince ležali v prvom riadku, bol súčet čísel, ktoré
zakrývali

1+2 + 3 + 4 + 5 + 6 + 7 = 28 .

Tým, že sme jednu z mincí posunuli do druhého riadku,
sa súčet čísel zakrytých mincami zváčší o 7. Podobné
posunutím mince do 3. riadku sa súčet zváčší o 2 . 7;
. . .; posunutím do 7. riadku o 6.7. Súčet čísel zakrytých
mincami sa teda zváčšil celkom o

(1 + 2-j-3-f-4 + 5 +6).7 = 21.7 = 147.
Súčet čísel vybraných tak, ako žiada úloha, je tedy vždy

28 + 147 = 175 .
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4. Součin dvou kvadratických troj členů x2 + ax + b,
x2 + cx + d je dvoj člen x4 + 4. Určete koeficienty
troj členů.

Řešení. Platí

(,x2 + ax -j- b) (x2 + cx + d) — x4, + (a + c)jc3 +
+ (b + d + ac)x2 + {ad + bc)x + bd .

Porovnáním (1) s dvoj členem x4 + 4 dostaneme
(1)

a -f c — 0 j

b "I- d -f- ас — 0 j

ad + be = 0 ,

bd= 4.

(2)

Z první rovnice (2) vyjde
(3)c — —a ;

po dosazení do třetí rovnice (2) dostaneme
a{d — b) — 0 .

Připustíme, že je a = 0; pak z (3) plyne c = 0 a z druhé
rovnice (2) d = —b. Ze čtvrté rovnice (2) pak dostaneme
—b2 — 4, což je nemožné. Je tedy а Ф 0 a z (4) plyne

d = b.

Dosadíme-li z (3) a (5) do druhé rovnice (2), vyjde
2b - a2 = 0 .

Vztahy (3), (5), (6) nám dovolují vyjádřit všechny koefi-
cienty pomocí a; je

(4)

(5)

(6)

1 1
— a2, c — —a, d = — a2 .

2 2

Z čtvrté rovnice (2) dostaneme vzhledem к (7)
— a4 = 4 ,

6 = (7)

4
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tj. я4 = 16, a2 = 4 (nikoli —4), a = ±2. Máme tedy
dvě řešení:

b da c

2 2 -2 2

-2 2 22

Zkouška.

(x2 + 2x + 2)(x2 - 2x + 2) = (x2 + 2)2 - 4x2 =
= x4 + 4 .

(x2 - 2x + 2)(x2 + 2x + 2)
Nepřihlížíme-li к pořadí trojčlenů, je řešení jediné.

x4 + 4 .
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V. Úlohy III. kola kategorie A

1. Určete všechny takové trojice komplexních čísel
a, b, c, aby rovnice

x4 — ar5 — bx + c = 0 (1)
měla kořeny a, 6, c.

Řešeni. Rozložme čtyřčlen na levé straně (1) v součin
kořenových činitelů:
x4 — ax3 — bx + c = (x — a)(x — b)(x — c)(x
kde d je čtvrtý kořen rovnice (1). Po vynásobení na pravé
straně (2) a po porovnání koeficientů při mocninách x
dostaneme soustavu rovnic pro a, b, c3 d:

ci -[~ b -j- c -j- d = ci 5

íi(b -f- c “h d') -(- bc -f- bd -\- cd — 0 3

a(bc + bd + cd) + bed = b ,

abed — c .

d\ (2)

Po jednoduché úpravě vyjde
b + c + d — 0 ,

bc + bd + cd = 0 j

b{cd - 1) = 0 ,

c{abd — 1) = 0 .

Rozlišíme případy b = 0 a b Ф^ 0.
I. Je-li b = 0, dostaneme z čtvrté rovnice (3) c = 0

a z první rovnice d = 0. Číslo a může být libovolné.
Máme jedno řešení:

a libovolné, b — c — d — 0 .

(3)

(4)
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II. Je-li b Ф O, plyne z třetí rovnice (3) cd
с ф 0, d Ф 0. Z čtvrté rovnice (3) dostaneme abd — 1.
Máme tedy soustavu

1, tj.

abd = 1 ,

d = —(b -j- c),
cd — 1 ,

bc + (b + c)d = 0 .

(5)

Vyloučením d z druhé až čtvrté rovnice (5) vyjde po
úpravě

(6)c2 + be + 1 = 0 ,

b2 + bc + c2 = 0 .

Vyloučením c z obou rovnic (6) dostaneme
b2 = 1 ,

tj. b = ± 1. Pro c pak dostaneme z první rovnice (6)
с2 ± c \- 1 = 0. (7)

1 + i 1/31 + i1/3
2 ’Označíme-li £x =

má první rovnice (7), tj. rovnice с2 + с + 1
= e2, druhá rovnice (7), tj. rovnice c2

= — £i. Hodnoty d vypočteme z třetí
rovnice (5), a z první rovnice (5). Celkem vyjde pět řešení,
která jsou zachycena v tabulce:

t-2 = 2

0, kořeny
c + 1 =

1
£13

£1 1
= 0, kořeny e2i

£2

da c

libovolné O 0 O

1 4 — 4

1 «i-p2 -£•2

- 1 4 -4-«2

-1 f2^1 -4
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2. Ak platia pre dížky hrán štvorstena ABCD vztahy
AB2 + CD2 = AC2 + BD2

potom je aspoň jedna jeho stená ostrouhlý trojuholník.
Dokážte.

Riešenie (obr. 30). Označme AB — c3 BC = a,
CA = b, AD — a'j BD = b'3 CD — c'. Potom vztahy
(1) možno zapísať v tvare

+ a>2 = b2 + b'2 = c2 + c'2.

AD2 + BC2} (1)

(10

Vyšetřujme velkosti uhlov *$lBAD, <£CAD a <£BAC
pri vrchole A. Označme ich podlá obrázku: <£BAD =
= cp3 <$.CAD = xp, <^BAC = co. Podlá kosínusovej
vety je

2a'c cos cp
2a'b cos xp = a'2 + b2 — c'2,
2bc cos (o — b2 + c2 — a2.

a'2 + c2- b'2, (2a)
(2b)
(2c)
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Z (Г) však vyplývá
За)а'1 - V* + с2 - b2 + с2 - a2,

a'2 — c'2 + 62 = b2 + c2 — a2. (3b)
Ak spojíme vztahy (2abc) a (3ab), zistíme, že čísla cos cp,
cos у a cos co sú súčasne všetky tri buď kladné alebo
záporné alebo rovné nule. Je teda bud

cp = гр = co = 90°
alebo

у < 90°, xp < 90°, co < 90°

<p > 90°, ^ > 90°, co > 90° .

Rovnaký výsledok platí aj pre uhly pri vrcholoch
В, C, D štvorstena ABCD.

Ak je teraz /\ABC ostrouhlý, nemáme čo dokazovat’.
Ak je /\ABC pravoúhlý alebo tupouhlý, a to tak, že
co 90°, potom je aj cp ^ 90°, у ^ 90°. Potom však pri
každom z vrcholov В, C, D je aspoň jeden uhol ostrý.
Podlá predchádzajúceho sú potom všetky uhly pri
vrcholoch В, C, D ostré, tj. trojuholník BCD je ostrouhlý.

alebo

3. V tabulce cyklických permutací
1, 2, . . ., n — \,n
2, 3,. . ., «, 1

n} 1,. . ., n — 2, n — 1
{n ^ 2) znásobíme každé číslo prvního řádku tím číslem
^-tého řádku, které je ve stejném sloupci. Všechny tyto
součiny sečteme a výsledek označíme sk (např. s2 =
= 1.2 + 2.3 + ... + (я — 1). я -Ь я . 1).

a) Odvoďte vztah mezi sk-15 sk a z něho vzorec pro sk.
b) Zjistěte, pro které k je při daném n součet sk nej-

menší, a vypočtěte tento součet.
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Řešení, a) Vypišme např. pátý a šestý řádek tabulky
(1) pro n — 8; dostaneme

5, 6, 7, 8, 1, 2, 3, 4
(2)

6, 7, 8, 1, 2, 3, 4, 5.
Každé číslo druhého řádku (2) je o 1 větší než nad ním
stojící číslo prvního řádku (2) s výjimkou čísla 1, které je
o 7 menší než nad ním stojící číslo 8. Zvětšíme-li součet
s5 o 1.1+2. 1+3.1 + ... + 8.1 a zmenšíme-li
jej o 4.8 (číslo 8 stojí totiž ve čtvrtém sloupci), dostaneme
56; je tedy

s6 — $5 + (1 + 2 + . . . + w) — 4.8. (3)
Rekurentní formule (3) se dá snadno zobecnit. Pře-

jdeme-li v schématu (1) od řádku k — 1 к řádku k,
zvětší se každé číslo o 1 kromě čísla n, které přejde v číslo
1. Lze tedy říci, že se číslo n zvětší také o 1, ale současně
se zmenší o n.

Čísla n vyplňují v schématu (1) vedlejší diagonálu;
v řádku k — 1 stojí na místě v a zřejmě platí k — 1 + v =
= n + 1, neboli

(4)v = n — k + 2 .

Odtud vyplývá: Ze součtu sk-i dostaneme součet sk3
přičteme-li 1+2 + ... + я= <г a zároveň odečteme
(podle (4)) číslo n . (n — k + 2); je tedy

Sk-! + o — n(n — k + 2) .

Rozepíšeme vzorec (5) pro k = 2, 3, . . ., k; dostaneme
+ = *1 + o — n2 + 2n — 2n ,

í3 = + a — ri1 + Ъп — 2n ,

(5)Sk

(6)

ri1 + k . n — 2n .sk-1 + <7sk
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Sečteme k —Л rovností (6) a dostaneme
h = + (k — l)rr — (k

'k (k+ 1)1)n2 -f n - 1
2

— 2(k — 1) . n .

1
Dosadíme-li sem a = — n{n + 1) a vytkneme-li ze2 1
všech členů na pravé straně (vyjma 5,) číslo — n, vyjde
po jednoduché úpravě

sk — s\ + — [kr — (n + Z)k + и + 1 ] , (7)

což je výsledný vzorec. Přitom sг stále značí součet
5, = l2 + 22 + . . . + n2 .

Vzorec (7) se pak dokáže indukcí pomocí rekurentní
formule (5).

b) Součet sk je při pevném n kvadratickou funkcí
proměnné k. Minimum funkce sk dostaneme, vyšetříme-li
minimum funkce

f(k) = k2 — (n + 2)k + n + 1 .

Protože platí
n + 2\2 n2

№ =lk-

má st minimum P™ — 2

(8)
4 52

Je třeba rozlišit dva případy:

I. Je-li n sudé, jev —

mum je podle (7) a (8)

n -f- 2
2 celé, a proto hledané mini-

rř
sv —

8
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' n -4- 2
II. Je-li n liché, není —-— celé číslo. Minimum sk

nastane pro nejbližší celočíselné hodnoty k; je to k —

П “j- 3 v v

—2—■;> což jsou skutečně celá čísla.
П 1

nebo h =

Minimum pak je
n3 — n

sk — sl ~~
8

4. Do kružnice k je vepsán ostroúhlý trojúhelník
ABC. Přímka m je vnější přímkou kružnice k, je rovno-
běžná s ВС a protíná polopřímku AB v bodě D.

a) Je-li X bod kružnice k ležící uvnitř toho oblouku
BC, který neobsahuje bod A, a je-li Y průsečík přímek
CX3 m3 pak body A3 D, X3 Y leží na jisté kružnici x.
Dokažte.

b) Vyšetřete vzájemnou polohu kružnice * a přímky ni
v případě, že body C, D, X leží v přímce.

Řešení (obr. 31).
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a) Dokážeme větu předně pro situaci, že body X, F
jsou odděleny přímkou AB (na obr. 31 body X13 Fj). Pak
trojúhelníky Z^BC, ZrDYx jsou homotetické podle
středu Zx (tj. průsečíku CX, AB). Proto platí

<^DF1Z1 = ^DYxXx = <£BCX
Protože body A, C náležejí témuž oblouku BX13 je
(podle věty o obvodových úhlech)

^BCXx = <£BAX\ = ^DAXx .

Spojením (1), (2) plyne, že
<DYxX\ = <£DAX

tj. body A, X13 D3 Ft leží na kružnici, kterou nazveme x.
Jestliže přímka AB neodděluje body X, F (na obr. 31

body X23 F2), ale existuje průsečík Z2 přímek CX23 AB,
pak postupujeme jako v předchozím případě. Homo-
tetické podle středu Z2 jsou trojúhelníky Z2DF2, Z2BC;
odtud odvodíme

<£X2AB = <ŽX2AD = <£Z2Y2D ,

<£X2AD + <£X2Y2D = 180° .

Protože čtyřúhelník ADY2X2 je konvexní, je tětivový,
tj. body A, D, F2, X2 leží na kružnici x.

Je-li CX || AB (X3 na obr. 32), nevznikne bod Z.
V tomto případě však je opět ^iX3CB = <£X3AB —
= <$iXzAD (obvodové úhly) a mimoto <£X3CB =
— <£ Y3CB = <£ Y3DB — <£ Y3DA (protější úhly rovno-
běžníku BDY3C)‘, proto platí

<£X3AD = «£ Y3DA ,

lichoběžník ADY3X3 je rovnoramenný, a tedy tětivový.
b) Zbývá vyšetřit situaci, kdy body C, X3 D leží

v přímce (Xi3 na obr. 33). Zvolíme bod Q přímky m tak,
aby ležel v polorovině ABC; pak platí

^QDX4 = QDC = <£DCB = <£X4CB ;

(1)i •

(2)

1 3

tj.
(3)

(4)
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podle věty o obvodových úhlech je však
<$X4CB = <£X4AB = <£X4AD . (5)
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Spojíme-li (4), (5), dostaneme vztah <£X4AD = <£QDX4.
Odtud vyplývá, že kružnice x procházející body A, D, XA
se dotýká v bodě D přímky m.

Iné riešenie. a) Východzia situácia je naznačená na
obr. 34, kde okrem toho К znamená priesečník priamky
AX so stranou BCaQ priesečník priamky AX s priam-
kou m. Kedze BC // m, vyplývá stade, že <£ CKX =

- ^XQY a XCK= <£QYX, pretože sú to uhly
striedavé. Uhly <í:XCB a <^XAB sú obvodové uhly
prislúchajúce tomu istému oblúku kružnice £, preto sú
zhodné. Z toho vyplývá, že /\XYQ~ /\DAQ (podlá
vety uu). Z podobnosti oboch trojuholníkov vyplývá:

QX:QY= QD:QA alebo QX . QA
Zo vztahu (1) vyplývá na základe vztahu pre mocnost’
bodu ku kružnici, že body A, X3 D, Y ležia na kružnici x.

QD.QY.(1)
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b) Ak body С, X, D, Y ležia na priamke, tou istou
úvahou dostaneme, že /\XDQ ~ ADAQ, odkial
^ QX:QD = QD:QA čiže QA . QX = QD*,
čo znamená, že priamka m sa dotýká kružnice ^ v bode D.

Riešil
^ Erich Wiszt,

III.b SVŠ Banská Bystrica.

)
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VI. Devátá mezinárodní matematická olympiáda

1. NĚKOLIK VŠEOBECNÝCH POZNÁMEK,
ZEJMÉNA ORGANIZAČNÍCH

Devátá olympiáda, která se konala ve dnech 3. až 12.
července 1967 v Jugoslávii, v černohorském městě Cetinji
a na pobřeží Jaderského moře, byla pozoruhodná v něko-
lika směrech. Kromě tradičních účastníků
socialistického tábora (Bulharska, Československa, Jugo-
slávie, Madarska, Mongolská, Německé demokratické
republiky, Polska, Rumunska a Sovětského svazu) se jí
zúčastnily letos poprvé i čtyři západní státy (Anglie,
Francie, /řá/ге a Švédsko)*). Při oficiálním jednání i při
soukromých rozhovorech se ukázalo, že zástupci západ-
nich zemí mají dosti odlišné názory na koncepci matema-
tických soutěží a na matematickou náplň olympiád. Zdá
se, že rostoucí počet účastnických zemí a různost názorů
povede к opatření, o kterém se mluvilo již na moskevském
kongresu r. 1966: že totiž pořádání soutěže se bude musit
ujmout některá mezinárodní organizace, pravděpodobně
Mezinárodní matematická unie.

Při IX. MMO učinila pořadatelská země pokus zorga-
nizovat malé symposium o vyučování matematice, jak
navrhl r. 1966 v Sofii bulharský ministr školství Gončev.
I když symposium nemohlo být pro krátkost času dobře
připraveno a musilo se ve značné míře improvizovat, byl
to počin dobrý; došlo к výměně řady informací, zejména
o matematických soutěžích v jednotlivých zemích; velmi
otevřeně se tu vyslovily i názory na pojetí těchto soutěží.
Bylo slíbeno, že sdělení účastníků symposia budou jugo-
*) Jména vedoucích delegátů i jejich zástupců jsou v tabulce 1.

devíti zemí

O
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slávským přípravným výborem rozmnožena a rozeslána
všem účastnickým zemím.

Jugoslávský svazový sekretariát pro vzdělání a kulturu
svěřil pořádání olympiády matematické společnosti (Sa-
vez društava matematičara, fizičara i astronoma Jugosla-
vije); jejím předsedou je akademik Danilo Blanuša ze
Zagreba, generálním sekretářem dr. Vojín Dajovic,
profesor bělehradské university. Předsedou Jury (mezi-
národní komise) byla dr. Milica Ilic-Dajovic, také profe-
sorka bělehradské university. Koordinování klasifikace
žákovských prací prováděla osmičlenná skupina jugo-
slávských koordinátorů, vesměs vysokoškolských učitelů,
v jejímž čele stál Milorad Bertolino, docent bělehradské
university.

Přípravný výbor umístil soutěž vhodně do klidného
města Cetinje, obklopeného svéráznou černohorskou
krajinou, která byla většině účastníků zcela neznáma; část
prací jury se však konala v Budvě, na nejjižnějším cípu
jugoslávské riviéry, na okouzlujícím pobřeží Jadranu,
které však v plné sezóně neposkytovalo právě nej lepší
pracovní podmínky.

Devátá mezinárodní matematická olympiáda se konala
pod protektorátem presidenta J. B. Tita a za aktivního
zájmu ministra školství Černohorské republiky; o tom bude
ještě zmínka při popisu průběhu soutěže.

Hned na tomto místě je vhodné zmínit se o budoucí
olympiádě. Při zasedání Jury a při jednání symposia byla
přednesena dvě pozvání na desátou olympiádu: doc.
Morozova pozvala účastníky jménem vlády své země do
Moskvy; obdobné pozvání přednesl i rumunský delegát
prof. Ionescu. Oba delegáti se později dohodli, že X. MMO
bude uspořádána v Moskvě. Jury tuto dohodu přijala
a doporučila, aby na X. MMO byly přizvány další
západní státy, zejména Norsko, Dánsko, Belgie, Holand-
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sko, popříp. i USA. Dále doporučila Jury, aby se XI.
MMO konala v Bukurešti.

Letošní olympiáda probíhala^ v podstatě ještě podle
statutu, navrženého v r. 1962 Československem; zdá se
však, že Sovětský svaz navrhne v příštím roce některé
organizační změny (možná i snížení počtu účastníků
z jednotlivých zemí) a že předem prokoresponduje při-
pravované změny s pozvanými zeměmi.

2. O MATEMATICKÉ NÁPLNI SOUTĚŽE

Jugoslávci rozeslali pozvání na IX. MMO poměrně
pozdě; tím se asi stalo, že některé země poslaly návrhy
soutěžních úloh opožděně, nebo je nezaslaly vůbec.
Přípravný výbor pak nemohl podle slov předsedkyně
jury v krátké době připravit několik promyšlených variant
šestic soutěžních úloh, a zejména nemohl zpracovat
autorská řešení v světových jazycích (za oficiální jazyky
byly prohlášeny angličtina, francouzština, italština, něm-
čina, ruština). Za této situace měli členové jury při volbě
úloh práci velmi svízelnou; tak se stalo, že úlohy nebyly
vybrány nejvhodněji a také jejich texty a ohodnocení
maximálním počtem bodů nebyly bez nedostatků.

Uvádíme české znění textů úloh, které bylo pořízeno
překladem z francouzštiny a němčiny; některé neobratnosti
v textu vznikly tím, že byl text schválený mezinárodní
komisí přeložen pokud možno doslovně. V závorkách je
uvedena země, která úlohu navrhla, a nej vyšší počet bodů,
kterým mohla být úloha oceněna.

1. den (5. července 1967)

1. Budiž ABCD rovnoběžník, jehož strany AB, AD
mají po řadě délky a, 1 a jehož úhel <£DAB má velikost a.
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Trojúhelník ABD nechť je ostroúhlý. Pak jednotkové
kruhy se středy А, В, C, D pokrývají*) rovnoběžník
ABCD právě tehdy, když platí

. a ^ cos a + 1/3 . sin a .

Dokažte.
(.Polsko, 6 b.)

2. Má-li jediná hrana čtyřstěnu délku větší než 1, pak
je jeho objem menší nebo roven -=■. Dokažte.

O

('Československo, 7 b.)

3. Buďte k, m, n přirozená čísla taková, že m + k -j- 1
je prvočíslo větší než n + 1. Budiž cs = s(s + 1). Pak
součin

(cm-i-1 — ck)(c — Ck) . . . (c — Ck)m+2 m+n

je dělitelný součinem cxc2. . . cn. Dokažte.
(Anglie, 8 b.)

2. den (6. července 1967)

4. Jsou dány dva ostroúhlé trojúhelníky A()B0C0
a A1B1CX. Sestrojte některý z trojúhelníků ABC, podob-
ných trojúhelníku A1B1C1 (tak, že vrcholům A13 Вj, Cx
odpovídají po řadě vrcholy А, В, C) a opsaných trojúhel-
niku A„B0C() tak, že strany AB, BC, CA procházejí
po řadě body C,„ A(), B(). Ze všech takových trojúhelníků
ABC určete pak trojúhelník maximálního obsahu a se-
strojte jej.

(Itálie, 6 b.)
*) To znamená, že každý bod rovnoběžníku náleží aspoň jednomu

z těchto kruhů.
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5. Budiž dána posloupnost
C1 — al "Ь a2 + • ■ • I ú8 )

C2 = fli -f ^2 + . . . + Й8)

Cn = al + «2 + • • • + a8 >

kde al} a2J. ., a8 jsou reálná čísla, ne všechna rovná
nule. Nechť dále nekonečně mnoho členů posloupnosti
{icn} je rovno nule. Určete všechna přirozená čísla n,
pro která je cn = 0.

[Sovětský svaz, 7 b.)

6. Při sportovní soutěži bylo rozděleno v и po sobě
jdoucích dnech {n > 1) celkem m medailí. Prvního dne
byla udělena 1 medaile a } ze zbývajících m — 1 me-
dailí. Druhého dne byly uděleny 2 medaile a \ ze zbý-
vajících, atd. Posledního dne bylo uděleno posledních n
medailí. Kolik dní trvala soutěž a kolik medailí bylo
celkem rozděleno?

(.Madarsko, 8 b.)

Několik poznámek к úlohám. Úloha 1 byla
pěkná a vhodná; к textu však bylo třeba připojit vysvět-
lení slova „pokrývání". Úloha připouštěla řadu různých
způsobů řešení (metoda souřadnic nebyla právě nej-
vhodnější); zdá se, že byla obodována příliš nízko, což
se ostatně ukázalo i při jejím korigování. Úloha 2 byla
pro stručnost textu i pro jasnost logické struktury řešení
uznávána většinou delegátů za velmi vhodnou. Úloha 3
spojuje prvky kombinatoriky a nauky o dělitelnosti;
její řešení se opírá o zcela jednoduchý výpočet a o jedinou
pomocnou větu, že totiž součin v po sobě následujících
přirozených čísel je dělitelný číslem v\
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Zcela nevhodná byla úloha 4, hlavně v té formulaci,
v které byla dána. Sváděla žáky к tomu, aby ji řešili
primitivně, aby si nevšímali geometrických míst vrcholů
A3 В, C, a zejména aby zanedbávali otázku existence
v první i druhé části úlohy. Bez existenčních důkazů je
řešení velmi jednoduché, ale neúplné. Úplné řešení je
dosti složité.

Úloha 5 byla beze sporu nejobtížnější; už proto, že
к jejímu řešení je třeba úsudků obvyklých v matematické
analýze, na něž nejsou žáci středních škol zvyklí. I for-
mulace úlohy mohla být jiná (dokažte, že pro všechna
lichá n platí cn — 0). Toto znění by bylo lépe odpovídalo
i hodnocení úlohy sedmi body.

Text úlohy 6 vznikl přeformulováním textu úlohy
o rozdělení dědictví mezi n synů. Reálná situace uvedená
v textu je poněkud násilná a neživotná. Výsledek je
neúměrně jednoduchý a nezajímavý vzhledem к složitosti
řešení. Řešení n — 6, m = 36 lze uhodnout; úkolem pak
je jedině dokázat, že úloha nemá jiné řešení.

Celek soutěžních úloh obsahuje tři úlohy geometrické
(1, 2, 4), což delegáti západních států nepřijali právě
sympaticky. Dále je tu opravdový nedostatek „řádné
algebryíC i trigonometrie, lépe řečeno goniometrie; v úloze
1 se vyskytuje trigonometrie jen okrajově.

Úlohy byly vybrány v duchu dosavadní koncepce
z různých úseků středoškolské matematiky. Francouzský
delegát prof. Adler (který se neúčastnil vybírání úloh,
neboť francouzská delegace přijela později) kritizoval
soutěžní úlohy asi takto: tematicky jsou zastaralé, netvoří
logicky a tematicky souvislý celek, ale jakousi tříšť
a neumožňují účastníku soutěže zvolit si úlohy z těch
úseků středoškolské matematiky, na které se při svém
individuálním studiu zaměřil. Z těchto námitek je asi
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zhruba patrný odchylný názor některých západních zemí
na koncepci olympiády; jsou to hlavně země románské
sféry, ovlivňované silně bourbakismem.

3. ŘEŠENÍ SOUTĚŽNÍCH ÚLOH

1. Budiž ABCD rovnoběžník, jehož strany AB, AD
mají po řadě délky a, 1 a jehož úhel <£DAB má velikost a.
Trojúhelník ABD nechť je ostroúhlý. Pak jednotkové
kruhy se středy A, В, C, D pokrývají rovnoběžník*)
ABCD právě tehdy, když platí

a ^ cos a + УЗ . sin a .

Dokažte.

Řešení, a) Nejprve dokážeme pomocnou větu P:
Budiž XYZ ostroúhlý trojúhelník, r poloměr kružnice

jemu opsané. Pak tři kruhy se středy X, Y, Z o poloměru
q pokrývají trojúhelník XYZ právě tehdy, když platí
Q >r.

Důkaz. Označme 5 střed kružnice opsané trojúhel-
niku XYZ (obr. 35); protože je trojúhelník XYZ ostro-

Z

*11

j*
X Zi

Obr. 35.

*) To znamená, že každý bod rovnoběžníku náleží aspoň jednomu
z těchto kruhů.
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úhlý, náleží bod 5 jeho vnitřku. Označme dále X13 Y13 Zx
paty kolmic spuštěných z bodu S po řadě na přímky
YZ3 ZX3 XY. Protože je trojúhelník XYZ ostroúhlý,
padnou body X13 Yl3 Zl do vnitřku příslušných stran.
Je-li q < r, pak bod S nenáleží žádnému z kruhů Kx =
= (X, o), Kr=(Y; o), Kz= (Z; e). Je-li q ^ r, pak
bod 5 náleží každému z kruhů Kx, KY3 Kz. Protože je
XYx< XS, náleží také bod Yx kruhu KX3 a tedy všechny
body (vyšrafovaného) trojúhelníku XFjS náleží kruhu
Kx. Obdobně se dokáže, že každý z ostatních trojúhelníků
XZxS3 YZ^S, YXtS3 ZXxS3 ZYXS náleží některému
z kruhů KX} KY, Kz.

Tím je pomocná věta P dokázána.
b) Nechť jednotkové kruhy KA, KB3 KCi K„ se středy

A3 В, C, D pokrývají rovnoběžník ABCD. Pak kruhy
KA,KB3KD pokrývají trojúhelník ABD. Kdyby tomu
totiž tak nebylo, platila by podle pomocné věty P ne-
rovnost 1 < r, kde r značí poloměr kružnice opsané
trojúhelníku ABD. Pro střed S této kružnice by tedy
platilo

(1)CS ^ 1,
neboť bod 5 by podle předpokladu náležel kruhu Kc.
Z obr. 36, v němž je BDC trojúhelník souměrně sdružený
s trojúhelníkem BDC podle přímky BD3 plyne

AS= C'S< CS3
neboť bod 5 leží uvnitř poloroviny BDA opačné к BDC.
Z (1) dostaneme CS < AS, což je ve sporu s (2).

c) Protože kruhy KÁ3 KB3 KD pokrývají trojúhelník
ABD, platí podle pomocné věty P nerovnost r ^ 1.
Vypočteme r3 podle kosinové věty a podle známého
vzorce je

r — AS > 1,

(2)

BD2 = a2 + 1 — 2 a cos a ,

BD — 2 r sin a .

(3)
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Vyloučíme-li z rovnic (3) BD a použijeme-li vztahu
r ^ 1, vyjde

a2 \ — 2 a cos a ^ 4 sin2 a ,

neboli
a2 — 2a cos a + 1 — 4 sin2 a ^ 0,

neboli
(4)(a cos a)2 ^ 3 sin2 a .

\
c\D

\
/

V-/
/ "

\\

.

cK"'
A\

\

Obr. 36.

Protože trojúhelník ЛВВ je ostroúhlý, padne pata jeho
výšky spuštěné z vrcholu D mezi body Л, B; proto je
a > cos a a z nerovnosti (4) dostaneme

]/3 sin a ,a — cos a

neboli
a ^ cos a + У3 sin a .

d) Obráceně, platí-li (5), platí i (4); odtud dostaneme
obrácením postupu 4r2 sin2 a = BD2 ^ 4 sin2 a, tj. r ^
^ 1. Z toho vyplývá podle pomocné věty P, že kruhy
KAi KB, KD pokrývají trojúhelník ABD. Užijeme-li
souměrnosti podle průsečíku úhlopříček ЛС, BD,

(5)
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zjistíme, že kruhy KA}KB} KCi 2^ pokrývají rovnoběžník
ABCD.

2. Má-li jediná hrana čtyřstěnu délku větší než 1, pak
je jeho objem menší nebo roven —. Dokažte.

O

Řešení. Budiž ABCD tetraedr, jehož hrany mají délky
AB = 2x ^ 1, AC ^ 1, AD ^ 1, ВС ^ Г, BD 1,
CD > 1. Označme г/, v délky výšek trojúhelníků ABC,
ABD, spuštěných na stranu AB.

Budiž q rovina stěny ABC. Pak vrchol C náleží vyšra-
fované části roviny p, která je průnikem jednotkových
kruhů se středy A, В (obr. 37).

Označíme-li body P, Q, Af, С', P podle obr. 37, je
zřejmě

С'Р ^ PM = ]/l - x2и -- - CR

124



neboli

U^]/1 - X2.
Obdobně dostaneme z trojúhelníku ABD

v jl — x2.

(6)

(7)
Protože výška čtyřstěnu АВCD spuštěná z vrcholu D

má nejvýše velikost v (jsou-li stěny ABC, ABD navzájem
kolmé), platí pro objem у čtyřstěnu ABCD tento odhad

1
у — — xuv ,

3

neboli podle (6), (7)
1

(8)у ^ — O — *3) •

Naším úkolem je najít maximum funkce ~ (x — xs)
1 3

v intervalu 0 < л: ^ Dokážeme, že tato funkce je
v uvedeném intervalu rostoucí. Skutečně, je-li хг < x2 ^
^ -i-, platí

1

1 1
— (*2 - xl) — — (xx — xf) =
3 3

=

J (x2 - *l) (1 - XyX2 — xl) ^x\

X\) > 0 j

tj.
1 1

— (*2 — xl)> — (Xj xl).
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1
Ze vztahu (8) pak dostaneme pro x = ^

^ 1 /1 1\ _ 1
^ ^

3 \2 8/ 8 '
Tetraedr, jehož hrany mají délky ЛБ = ЛС = /ID =

= ВС = BD = 1 a jehož stěny ABC, /1BD jsou navzá-
jem kolmé, má objem

1
a jeho hrana CD má délku8

Ц.У2 = Ц>1.
Tím je dokázána věta z úlohy 2 a zároveň je ověřeno,

že existuje tetraedr maximálního objemu
1

8 '

3. Buďte k3 m3 n přirozená čísla taková, že m + k -f- 1
je prvočíslo větší než n + 1. Budiž cs — s(s + 1). Pak
součin

(^m+i 2 • • • (č
je dělitelný součinem ctc2. . . cw. Dokažte.

Řešení, a) Nejprve zjistíme rozepsáním součinu
cxc2 . . . cn) že platí

ci . c2 . . .

Dále vypočteme
cm+x — ск = m + Я — k + (m + Я)2 — ,

m+w

= и! (я + 1) ! (9)

tj.
cm+л — w + Я — £ + (m + Я — + Я + k) —

= (m + Я — &)(m + Я + k + 1);
přitom Я je libovolné přirozené číslo. Pomocí rovnosti
(10) upravíme daný součin takto:
P — (pm+l ^k) • (,Cm+2 Cft) .... (Cm+n Cfc) -= P\P

(10)

Ž 5
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kde

Pj = (m + 1 — k). (m + 2 — k)
P2 — (m + k + 2) . (m + k + 3) .

. (m + n — k),
(m + k + n + 1).

(И)
Součin Pj obsahuje n za sebou jdoucích celých čísel. Je-li

p
některé z těchto čísel nula, je — 0, tj. číslo celé.

Není-li žádný z činitelů Px roven nule, je P, až na zna-
mění rovno součinu n po sobě jdoucích přirozených čísel

p
a pak je také číslo celé. Platí totiž pro libovolná
přirozená čísla a, fi, že

(a -f- l)(a -f- 2) (a + /5) -Г/)V
je číslo celé.

Tím je dokázáno, že součin Px je vždy dělitelný číslem
n\

b) Nyní budeme vyšetřovat součin (m + k -f 1)P2.
Je to součin n + 1 po sobě jdoucích přirozených čísel,
proto je podle předchozího dělitelný číslem (n -f- 1)!
Platí tedy

(12)(m + k + 1)P2 = q . n\ (n + 1),
kde q je přirozené číslo. Pravá strana (12) je dělitelná
prvočíslem m + k + 1. Protože je m + k + 1 větší než
každé z čísel 1, 2, . . ., n + 1, je m + k + 1 dělitel
čísla q, tj.

(13)q = r(m + k + 1) ,

kde r je přirozené číslo. Dosadíme-li z (13) do (12) a krá-
tíme-li číslem m + k + 1, vyjde

P2 = r . (n + 1) !,
tj. součin P2 je dělitelný číslem (n + 1)!.
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Podle (11) je tedy součin P = PXP2 dělitelný číslem
n\(n + 1)!, tj. podle (9) je součin P dělitelný součinem
сгс2. . . cni jak jsme měli dokázat.

4. Jsou dány dva ostroúhlé trojúhelníky A0B0C0
a AxByCx. Sestrojte některý z trojúhelníků ABC, po-
dobných trojúhelníku A1B1C1 (tak, že vrcholům Als
Bls Cx odpovídají po řadě vrcholy А, В, C) a opsaných
trojúhelníku A0B0C0 tak, že strany AB, BC, CA pro-
cházejí po řadě body C0, A0, B(). Ze všech takových troj-
úhelníků ABC určete pak trojúhelník maximálního
obsahu a sestrojte jej.

Řešení, a) Dokážeme nejprve pomocnou větu P:
Je-li A0B0C0 ostroúhlý trojúhelník a jsou-li a15 /?13 yl

tři ostré úhly, pro něž platí осг + Pi + 7i = pak
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existuje uvnitř trojúhelníku A0B0C0 jediný bod M, z něhož
je vidět úsečky A0B0, B0C0, C0A0 po řadě pod úhly
TC — yl3 71 — a15 71 —

Sestrojme kružnice kA, kB, kc takto: kA prochází body
B0, C0 a z každého jejího bodu ležícího v polorovině
Б0С()Л0 je vidět úsečku B0C0 pod úhlem n — a.x. Cyklic-
kou záměnou dostaneme kružnice kB> kc (obr. 38).

Kružnice kAi kB se nedotýkají v bodě C„. Jinak by totiž
platilo podle vlastností úsekových úhlů и — осх + y0 +
+ 7Г — = 2k neboli y0 = ai /^1 = 71 ~ 7i> c°ž Iе
nemožné, neboť

уo = ^CA0C0B0 je ostrý, n — yx tupý.
Kružnice kA, kB se tedy protnou mimo bod C0 ještě

v dalším bodě M. Dokážeme, že bod M leží uvnitř troj-
úhelníku A0BqC0; vyvrátíme totiž, že by bod M náležel
některé z šesti (uzavřených) oblastí označených na obr.
39 písmeny Qí3 Q23 í?2', Í23, Q'z a Í24.



Nechť bod 4Í náleží oblasti Qx (obr. 40a); pak je
<£Á0MB0 = <£A0MC0 + ^С0Л4Б0
— x1 — n -f yx \ avšak ^CA0MB„ ^

= TU — [ix + TU —

tu, což je spor.

Л

воB0 A. i

Obr. 40 abcd.

Nechť bod M náleží oblasti Í22; pak je (obr. 40b)
<£C()MB0< <£C0A()B{) = a0 < ; avšak <>cC()MB() =

— ocj >-, což je opět spor. Obdobně se vyloučí
oblast Q2.

Leží-li bod Aí v oblasti Q3 (obr. 40c), je <£А0МС0 >
> <£B0MC0, tj. f}x > 71

= TU

x13 což je nemožné, neboť
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(íx < — j 7т — ocx > -■■. Obdobné se vyloučí oblast ÍIJ.
Leží-li konečně bod M v oblasti Ц, (obr. 40d), je

<£A()MC0 + C0MB0 = <£A()MB() < <£A0C0B0, tj.
Pí -f- <xx < y0, což je opět spor, neboť ax -f /5a =

77 77
- Ух > 2^ > Го < j *

71 —

Protože bod Aí leží uvnitř /\A0B0C0 (obr. 41), platí
<A0MC0 — 7z ^i, <£.B0AÍC0 = 77 a13 <£A()MB0 —
= 2тг — (тг — a2) — (tt — jSj) = ax + & = тг — yls tj.
bod Aí je společným bodem kružnic kB, kc.

b) Sestrojme v bodech A0, B0, C() po řadě kolmice
к přímkám MA0, MBW AÍC0. Tyto přímky se protnou
po dvou v bodech A2S B2, C2 (obr. 42). Vznikne tak
trojúhelník A2B2C2i jehož vnitřní úhly jsou ocJ} /?1Э yx.
Body A o, B23 C2 leží po řadě na kružnicích kA> kB, k
Snadno dokážeme, že trojúhelník A2B2C2 má maximální
obsah ze všech možných trojúhelníků ABC. Trojúhelník
A2B2C2 má maximální obsah, má-li maximální jednu
stranu, např. A2B2. Na obr. 43 jsou kružnice kA, kB, jejich
průsečíky C,„ Aí, úsečka A2B2 a strana AB libovolného
trojúhelníku ABC, procházející bodem C0. Natémžobráz-
ku je sestrojena úsečka A'B' souměrně sdružená s AB

c*
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podle středné kružnic kA, kH. Z tětivových čtyřúhelníků
MC0A2AMCfíB2B' plyne, že je A2A' J_ A'B',
B,B'±A'B’; proto je, > A'B' = AB.

Tím je důkaz proveden.
Maximální trojúhelník A2B2C2 zajišťuje existenci aspoň

jednoho trojúhelníku žádaných vlastností. Intuitivně lze



ovšem sestrojit další. Zvolíme libovolný bod A na kruž-
ničí kA vně trojúhelníku Л0Б0С0; sestrojíme přímky AB03
AC0. Protnou-li tyto přímky kružnice kC3 kB po řadě
v bodech С, В ležících vně ДЛ0В0С(), pak trojúhelník
ABC je trojúhelník žádaných vlastností.

Body В, A0, C leží totiž v přímce; pak plyne z násle-
dujícího důkazu (obr. 44): přímka BA0 protne polo-
přímku AB() v bodě C (tento průsečík vznikne, neboť
ai + A < ti). Z trojúhelníku ABC' dostaneme, že
<^BC'A = 7c — ax — /?x = yj. Protože bod C leží
podle své konstrukce v polorovině opačné к A0B0C0i
je ^:AqC'B() = <$BC'A = 7j, tj. bod C náleží kružnici
kc i přímce ABm a splyne tedy s bodem C.
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5. Budiž dána posloupnost
C\ = d\ + Clo + • • . -f- <2S,

C2 — a\ + #2 + • • • + a8 >

= a" + a\ + . . . + «8 5

kde ax, a2, . . ., a8 jsou reálná čísla, ne všechna rovná nule.
Nechť dále nekonečně mnoho členů posloupnosti {cn}
je rovno nule. Určete všechna přirozená čísla n, pro která
je cn 0.

Řešení, a) Nejprve odvodíme tuto pomocnou větu P:
Buďte a,, a2, . . ., a,,, ft (v taková kladná čísla, že
at < [i, oc2 </?,.. ., a,, < ft. Pak pro všechna přirozená
čísla n od určitého počínaje platí

a» + a» + . . . + a» < ftn . (14)
«iSkutečně, podle předpokladu jsou všechna čísla

kladná a menší než 1. Podle známé vlast-
/? ’a2 a„

nosti exponenciální funkce existují tedy přirozená čísla
n\, n2i . . ., nv3 takže platí pro všechna n ^ щ

1аЛ"
(15a)<

ft
pro všechna n ^ n2

1ry \ 71
(15b)<

ft
atd.; pro všechna n ^ nv platí tedy

1~/ \ n

(15 c)<
ft
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Sečtením nerovností (15) dostaneme nerovnost

(?)■♦(?)' + . . . +

neboli po znásobení číslem fln nerovnost (14). Ta platí pro
všechna n ^ nw kde n0 je největší z čísel nX3 n2, . . ., nv.

b) Z předpokladu úlohy 5 (a1} a2i . . as nejsou vesměs
rovna nule) vyplývá, že cn > 0 pro všechna sudá n.
Dokážeme, že cn — 0 pro všechna lichá n.

Nejprve vynecháme z čísel al3 a2, . . ., a8 ta, která jsou
rovna nule. Zbývající rozdělíme do dvou skupin: kladná
označíme pl3 p2, . . ., pr, záporná —ql3 — q23 .

Podle podmínky úlohy platí
íí +PS+ •••+# — íí—# — ••• — «? = o,

-Яг•

neboli

Pí + Pí + • • . + Pnr = q\ + ql + • • • + qns (16)
pro nekonečně mnoho lichých exponentů n.

Čísla pi'ip2,. . .,pr i íu ^23 • • o jsou kladná a můžeme
předpokládat, že jsou uspořádána sestupně, tj. že platí

Pí ^ Рг ^ ^ Prl qi ^ Яг ^ ^ 0* • (17)
Kdyby bylo pj > bylo by podle (17) px > q2}. . .jpj >
> gs; podle pomocné věty P by pak platilo od určitého
exponentu n

Pí > Яг + 72 + • • • + 3

a tím spíše
Pí + Pí + • • • + Pnr > qnx + Я1 + • • • + Я? •

To znamená, že rovnost (16) by nemohla být splněna pro
nekonečně mnoho lichých exponentů n.

Stejně jako jsme vyvrátili nerovnost px > qís vyvrátíme
i nerovnost qx > px\ je tedyp! = qv Obdobně dokážeme
dále, že je p2 = , . . ., pr = qs (r = s). Rovnost (16)
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pak platí pro všechny liché exponenty n, tj. cn — 0 pro
všechna lichá n.

6. Při sportovní soutěži bylo rozděleno v я po sobě
jdoucích dnech (n > 1) celkem m medailí. Prvního dne
byla udělena 1 medaile a ^ ze zbývajících m — 1
medailí. Druhého dne byly uděleny 2 medaile a \ ze
zbývajících, atd. Posledního dne bylo uděleno n medailí.
Kolik dní trvala soutěž a kolik medailí bylo celkem roz-
děleno ?

Řešení. Označme zk(k — 1, 2,. . ., n) počet medailí,
které zbyly &-tého dne po udělení k medailí. Pak je

%k+\ = Zk ~ zk k 1 s
7

neboli po úpravě
— zk — zk+x + k + 1 .

Označme ak počet medailí vydaných &-tého dne; pak je

Ze vzorců (18), (19) dostaneme snadno rekurentní vzorec
pro ak\ stačí napsat (19) pro k + 1

=*+i+!

(18)

(19)ak Zk •

Zk+1 (20)ak+1

a ze vzorců (19), (20), (18) vyloučit zk) zk+1; po snadné
úpravě vyjde

7
(21)ak — T ak+1 — 1 •

6

Rozepíšeme-li rovnost (21) pro k — 1, 2,. . ., n — 1,
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dostaneme

í2j — #2 1 ,
6

7
(22)a2 — , аз 1 )

6

7
a»-i — 6

Znásobíme-li rovnosti (22) po řadě čísly 1, , . . .
/ 7 \ n-2 O \ O )

-ti) a sečteme, dostaneme vzorec

“‘-(1) a«~[1 + | + -
který po úpravě a po dosazení an — n dostane tvar

ел •
.. +

er (n 6) + 6. (23)ai

Vzorec (23) lze dokázat matematickou indukcí z rekurent-
ní formule (21).

Protože je n > 1, plyne z (23), že číslo n je násobek
šesti. Jedno řešení je n = 6, ax = a2
m = 36 (vypočteme z (22)).

Je-li n > 6, položíme и = 6£, kde & je přirozené číslo
větší než 1. Pak koeficient n — 6 = 6(£ — 1) v (23) je
dělitelný mocninou 6й-1 = 66*-1. Protože pro každé
k > 1 platí

6,• • — ^6

bk-\>k—\3
není koeficient 6{k — 1) dělitelný mocninou 66fc_1.

Úloha má tedy jediné řešení n = 6, m = 36.
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4. VÝSLEDKY SOUTĚŽE

Přehled bodů, které získali jednotliví žáci, ukazuje
tabulka 2. Z tabulky je patrno, že francouzské družstvo
mělo jen pět žáků, italské jen šest. Přitom Italové se
zúčastnili obou soutěžních prací, Francouzi jen druhého
dne; mimoto přijeli v noci před 6. červencem, žáci tedy
byli unaveni a nevyspalí. Proto jsou výsledky Francouzů
iregulární. Naproti tomu u Italů lze dosažený výsledek

g
přepočíst znásobením koeficientem — ; tak dostaneme
pravděpodobný počet bodů 147.

I když se stále zdůrazňuje, že mezinárodní olympiáda
je soutěží jednotlivců, vyskytuje se vždy při hodnocení
poslední sloupec tabulky 2, který udává celkové počty bo-
dů jednotlivých účastnických zemí a který dovoluje sesta-
vit neoficiální ,,pořadí“. Je otázkou prestiže (snad nezdra-
vé) každého státu, aby byl v tomto pořadí na předním místě.

Tabulka 2 ukazuje, že к tradičním favoritům meziná-
rodních olympiád přibyl letos další: Anglie. Vznikla tak
„silná pětka“ (SSSR, NDR, Maďarsko, Anglie a Rumun-
sko) celkem vyrovnaných družstev. Od ní se dosti výrazně
odlišuje (viz počty bodů) skupina slabších, kterou vede
ČSSR s Bulharskem; velmi špatné umístění má letos
Polsko, které získalo jen jednu třetí cenu. Do slabší
kategorie patří i noví účastníci Itálie a Švédsko, o jejichž
perspektivách je však těžko něco prorokovat; stačí uvě-
domit si neobyčejný vzestup NDR v posledních čtyřech
letech.

Nyní ještě něco o cenách: nejvyšší dosažitelný počet
bodů pro jednoho žáka byl 42 (žáci, kteří ho dosáhli,
jsou v tabulce 2 v rámečcích). Meze pro udělení cen byly
v závěrečném zasedání jury stanoveny takto:
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I.cena: 38 až 42 bodů;II.cena: 30 až 37 bodů;III.cena: 22 až 29 bodů.

Podle tohoto klíče získali účastníci z jednotlivých zemí
ceny uvedené přehledně v tabulce 3.

Mimo tyto ceny byly uděleny několika žákům zvláštní
odměny za originální a elegantní řešení nebo za zobecnění
úloh.

Jury chtěla udělit také zvláštní ceny některým fran-
couzským žákům. Prof. Adler však takovéto ceny „pro
útěchu“ odmítl s tím, že Francouzi se nepovažují za
daných okolností za řádné účastníky soutěže, ale jen za
pozorovatele.

5. PRŮBĚH SOUTĚŽE

Ačkoli pozvání na IX. MMO došlo z Jugoslávie po-
čátkem dubna, bylo oznámeno místo konání soutěže se
stručným časovým programem teprve kolem 10. června.
Tu byla už velmi krátká lhůta pro zajištění dopravy dele-
gací, zejména když Cetinje nemá ani letecké, ani vlakové
spojení a doprava autobusem z nejbližších stanic nebo
letišť (Dubrovnik, Titograd) je odkázána na úzké silnice
v hornatém terénu
kilometrů.

Delegáti se sjížděli v Cetinji 30. června a 1. července.
Již dne 1. 7. se konala v moderním hotelu Park, kde byli
ubytováni všichni vedoucí delegací, první schůze neúplné
jury, na níž byl vyhlášen podrobnější program. Po pro-
hlídce města Cetinje (zejména sídla Nikolova) odjeli
odpoledne delegáti na mořské pobřeží do ozdravovny
v lázeňském místě Budva. Zde začla zasedat jury ráno

a to vždy na vzdálenost 40 i více
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dne 2. července v improvizované místnosti; teprve bčhem
zasedání se dostavili reprezentanti Itálie, Švédská
a Anglie. S anglickou delegací přijel také pracovník ústavu
pro řízení vědy Maurice Goldsmith, který se zúčastnil jako
pozorovatel některých schůzí jury i symposia. Oba dny
2. a 3. července byly věnovány vybírání úloh, jejich ohod-
nocení body a precizování textů ve světových jazycích.
Dne 3. července večer přijeli i zástupci vedoucích (peda-
gogičtí průvodci), neboť mezitím se sjela v Cetinji
žákovská družstva. Také pedagogičtí průvodci zůstali
pak ubytováni v Budvě, a tak byli žáci dokonale izolováni
v Cetinji, kde bydlili ve dvou hotelích.

Přes noc na 4. července se pořídily překlady textů do
národních jazyků, během dopoledne je pedagogičtí
průvodci rozmnožili. Od 10 h do 13 h se konala v Budvě
první část symposia, večer byla v restauraci na pláži
recepce delegátů, kterou pořádal ministr školství černo-
horské republiky Mišičič.

Dne 5. července odjeli časně ráno všichni delegáti
i jejich zástupci autobusy do Cetinje; zde v budově
místního národního výboru zahájila prof. Dajovič soutěž.
Promluvil ministr Mišičič a akademik Blanuša. Žáci
začali pracovat asi v 9,30 a měli na první tři úlohy
4 hodiny čistého času.

Delegáti a jejich zástupci pak podnikli výlet dopoledne
na horu Lovčen; odpoledne se vrátili do Budvy, kde vzhle-
dem к pracovním podmínkám nebylo možné začít s kori-
gováním žákovských úloh. Dne 6. 7. ráno odjeli delegáti
se svými zástupci do Cetinje к zahájení druhé části
soutěže. Sem už zatím dorazila také francouzská delegace
vedená prof. Adlerem; francouzští žáci se pak zúčastnili
druhé části soutěže. Tato část obsahovala opět tři úlohy,
na které měli žáci čtyři hodiny čistého času. Dny 6. až
8. července byly věnovány opravování a koordinování
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úloh. Úlohy jugoslávského družstva koordinovali delegáti
těch zemí, které navrhly příslušnou úlohu.

Dne 8. července večer v 18.00 hod. začalo závěrečné
zasedání jury; proběhlo velmi rychle a hladce. Zde bylo
rozhodnuto o udělení cen; sporné případy nebyly. Na
této schůzi přednesli doc. Morozova a prof. Ionescu
pozvání na příští olympiádu. Ve dnech 7. a 8. července
jezdili žáci autobusy do Budvy, kde strávili u moře
příjemné dny rekreace.

Neděle 9. července byla věnována celodenní exkurzi
všech účastníků do monastýru Morača а к Biogradskému
jezeru (asi 260 km cesty autobusy). Dne 10. července
v 10 h pokračovalo symposium, večer byla schůzka
s representanty národního výboru města Cetinje. Pondělí
11. července bylo věnováno výletu do Dubrovníka, 12.
dopoledne bylo volno, pak následoval slavnostní oběd.
Odpoledne se konalo za přítomnosti ministra slavnostní
rozdílení cen a diplomů, večer byl ples mládeže. Dne 13.
července se delegace rozjížděly do svých domovů

Snad i z tohoto stručného vylíčení průběhu IX. MMO
je patrné, že vyžadovala velké vypětí sil jak od delegátů
a jejich zástupců, tak i od jugoslávských organizátorů.
Pracovalo se často intenzívně za parných dní od rána do
večera, absolvovalo se (i s exkurzemi) na 700 km cest
autobusy po obtížných horských serpentinách, které
vyžadovaly pevné nervy nejen u řidičů, ale i u cestujících.

Snad na tomto místě je třeba se zmínit o práci aspoň
dvou jugoslávských pracovníků: prvním z nich je před-
sedkyně jury, prof. Milica Illič-Dajovič, která díky svým
jazykovým znalostem řídila všechna jednání obratně,
taktně a pohotově; za její výkon jí právem náleží obdiv
a uznání. Vskutku obětavým a neúnavným organizačním
pracovníkem byl také prof, cetinjského gymnasia Michal
Begovič, jehož rychlé a operativní zásahy rozřešily
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mnohou svízelnou situaci. Celkem je třeba konstatovat,
že pohostinnost jugoslávských soudruhů byla opravdu
slovanská.

6. ČESKOSLOVENSKÁ DELEGACE

Naše delegace se skládala z vedoucího, jeho zástupce
a osmi žáků; jejich jména i výsledky, kterých dosáhli,
jsou uvedeny v tabulce 4.

S výsledky nemůžeme být ani letos spokojeni. Nejméně
lze žákům vyčítat malý úspěch v úloze 5 (celkem 18 bodů),
neboť s úlohami tohoto druhu se nesetkali ani v školské
praxi, ani ve speciální přípravě. Více zaráží slabý výsledek
v úloze 3, nejvíce pak nevalný výsledek v úloze 4, kde
často nepodali ani intuitivní řešení. Také obě nuly
v sloupci 2 jsou velmi zarmucující a skutečnost, že nikdo
z našich žáků nerozřešil zcela správně úlohu 1, nás
udivuje. Prohlédněme tabulku 4 ještě jednou po řádcích:
náš nejlepší žák Bohuš Sivák rozřešil jen jedinou úlohu
bez chyby, žádný žák nemá víc než dvě bezvadně rozře-
šcné úlohy. A to,je skutečně málo, uvážíme-li, že jsme
v loňském školním roce věnovali speciální přípravě
olympioniků zvláštní pozornost. Přestože slabý výsledek 3.
kola domácí olympiády nám nedával příliš růžové per-
spektivy, přece jen jsme pokládali naše družstvo za sil-
nčjší. Dva z účastníků, kteří byli na předních místech
3. kola domácí olympiády, selhali úplně a ani ostatní
nepodali očekávaný výkon. Podle skutečné kvality našeho
družstva jsme jistě mohli získat 5 až 6 cen, z toho možná
i jednu první.

Nezbývá nám než opět pátrat po příčinách našeho
poměrně malého úspěchu. A tu musíme zase konstatovat,
že naše střední škola, a to i speciální matematické třídy,
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neposkytují našim žákům tak dokonalou přípravu jako
obdobné školy v zahraničí. Máme v učebním plánu
poměrně málo hodin matematického praktika a tedy méně
zkušeností a rutiny. Naše osnovy, učebnice, a zejména
příkladový materiál je pro nadané žáky málo náročný.
Často to platí i o učitelích. Zdá se, že speciální matema- ’
tické třídy by se měly zřizovat tak jako v zahraničí jen
v místech, kde jsou pro to podmínky, a že by v nich měli
učit převážně vysokoškolští profesoři. Žádná speciální
příprava mimoškolní (např. dvě hodiny semináře týdně)
nemůže nahradit systematické, náročné a dobře vedené
vyučování. Zkusíme sice v školním roce 1967 — 68 jiný
způsob přípravy vybraných talentů, ale zázraky nelze
očekávat. Nechceme zde propagovat výchovu matema-
tických žákovských primadon, ale na druhé straně
výjimečné nadání mladých lidí pro matematiku je hod-
nota, jejíž ztrátu si naše společnost nemůže dovolit. Čím
dříve se talentovaný žák podchytí (ovšem nikoli předčas-
nou specializací), tím lépe pro jeho budoucí rozvoj.
V tomto směru však mají mnoho dluhů naše devítiletky,
které se stále starají více o to, jak doučovat děti zaostávající,
než jak podporovat žáky nadané, kteří jsou nadějí národa.

Jako druhá příčina našeho poměrně malého úspěchu se
nám jeví opět nedobrý nervový stav našich žáků, jejich
malá jistota, sebedůvěra, houževnatost a vytrvalost
v překonávání překážek. Tyto záporné vlastnosti jsou
způsobovány nebo aspoň posilovány nedostatky ve
výchově.

Snad bychom se měli na konci ještě zmínit o některých
dosti dramatických okolnostech, které doprovázely naši
účast na letošní olympiádě. Přestože informace o místě
konání soutěže došly až v polovině června, snažilo se MŠ
zajistit čs. delegaci co nejlepší podmínky pro cestu do
Cetinje a zpět. Zajistilo obě cesty letadlem, ovšem vzhle-
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dem к nedostatku volných míst byla cesta do Jugoslávie
stanovena na 29. června, cesta zpět na 12. července. To
znamenalo předčasný příjezd a předčasný odjezd. Ačkoli
čs. delegace byla odhodlána absolvovat dvoudenní zpá-
teční cestu vlakem z Titogradu přes Sarajevo, Bělehrad
a Budapešť, aby se mohla zúčastnit závěrečných slavností
dne 12. července, nepodařilo se tento úmysl provést.
Letenky na 12. července nebyly členkou organizačního
výboru v Jugoslávii včas vráceny, a tak se musela naše
delegace rozloučit dne 11. července v Dubrovníku s ostat-
nimi účastníky IX. MMO; nevrátila se už do Cetinje,
ale po přenocování odcestovala přes Split do Prahy. Naši
žáci byli tak připraveni o dojmy ze slavnostního zakončení
i o dárky; jakousi náhradou za to snad jim byla pěkná
plavba parníkem z Dubrovníku přes Korčulu a Hvar do
Splitu a pohodlný návrat letadlem do Prahy.

144



Tabulka 1

Vedoucí delegací a jejich zástupci

I

ZástupceZemě Vedoucí

dr. Norman RoutledgeRobert Lyness, inspektorAnglie

prof. Spas Monolov Stojan D. Budurov,
inspektor

Bulharsko

ČSSR doc. Jan Výšin dr. František Zítek,CSc.

prof. André AdlerFrancie

prof. Tullio Viola prof. Angelo PescariniItálie

Vladimír Micié,
magister

doc. Dušan AdnadcvičJugoslávie

prof. István ReimanMaďarsko Endre Hódi, věd. pracov.

doc. Uržin Sanžmjatav Aivan Duger, bagšMongolsko

dr. Helmut Bauschprof. Hans-Joachim
Weinert

NDR

prof. Mieczyslaw
Czyzykowski

Andrzej Makowski,
magister

Polsko

prof. Constantin Ionescu prof. Zlaté BogdanovRumunsko

doc. Elena Morozova Ivan Petrakov, metodikSovětský svaz

Švédsko doc. Lars Inge Hedberg Lars Branded, kand.
fil.
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Tabulka 2

Počty získaných bodů

Cel-
kový
počet
bodů
země

Počet bodů žáka č.
1 2 3 4 5 6 7 8

Země

Anglie

Bulharsko

Československo

24 28 18 36 34 28 41 22

7 14 24 20 20 11 21 Щ
16 27 30 24 9 13 11 29

231

159

159

Francie 4 10 9 6 12 41

Itálie 20 35 19 7 26 3 110

Jugoslávie

Maďarsko

Mongolsko

Něm. dem. rep.

13 18 11 18 26 22 6 22 136

34 31 38 33 23 26 38 28

10 11 26 15 6 9 7 13

Щ 30 23 Щ 39 35 13 33
22 8 12 7 18 5 9 20

34 Щ 22 17 29 19 28 23

37 35 32 Щ 27 38 39 25;
16 10 15 28 9 20 14 23

251

87

257

Polsko 101

Rumunsko 214

Sovětský svaz

Švédsko

275

135

146



Tabulka 3

Přehled udělených cen

Cena
Země Celkem

I. II. III.

Anglie
Bulharsko

Československo
Itálie

Jugoslávie
Maďarsko

Mongolsko
Německá demokratická

republika
Polsko

Rumunsko

Sovětský svaz

Švédsko

1 2 4 7

1 1 2

1 3 4

21 1

3 3

2 3 3 8

1 1

1 73 3

11

4 61 1

2 83 3

22

Celkem 5111 2614
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Tabulka 4

Přehled výsledků československého družstva

.2 Počet bodů v úloze č.Jméno
žáka

>U

§
oRžá

Škola a třída
>u
c

1 2 3 4 5 6

SVVŠ Praha,
W. Piecka, 3. r.

SVVŠ Velké
Meziříčí, 2. r.

1. ! Petr
Kůrka 3 0 0 5 0 8 16

Pavel
Polcar

2.
5 0 8 3 III7 4 27

SVVŠ Zvolen,Bohuš
Sivák

3.
5 5 8 4 5 3 30 II1. r.

SVVŠ Praha,
W. Piecka, 1. r.

SVVŠ Banská

Bystrica, 3. r.

SVŠ Bratislava,
Novohradská, 3. r.

Tomáš
Mašek

4.
24 III5 7 0 3 1 8

Erich
Wiszt

5.
12 0 5 91 0

6. ; Martin
; Macháček 14 0 5 2 131

SVVŠ Plzeň,Jan
Kastl

7.
1 7 0 0 1 113. r. 2

SVVŠ Praha,
W. Piecka, 3. r.

8. Radovan
Gregor III3 7 8 3 2 6 29

Celkem 24 32 24 28 18 33 159
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