Author: Kalas, Josef
- 
Došlý, Ondřej; Jansová, Eva; Kalas, Josef:
		Eighty fifth anniversary of birthday and scientific legacy of Professor Miloš Ráb.
		
			(English).
Archivum Mathematicum,
		vol. 50
			(2014),
			issue 1,
		pp. 1-19
- 
Kalas, Josef:
		Asymptotic behaviour of a difference equation with complex-valued coefficients.
		
			(English).
Archivum Mathematicum,
		vol. 41
			(2005),
			issue 3,
		pp. 311-323
- 
Kalas, Josef:
		The use of Lyapunov functions in uniqueness and nonuniqueness theorems.
		
			(English).
Archivum Mathematicum,
		vol. 36
			(2000),
			issue 5,
		pp. 469-476
- 
Kalas, Josef:
		Asymptotic behaviour of the equation $\dot z=G(t,z)[h(z)+g(t,z)]$.
		
			(English).
Archivum Mathematicum,
		vol. 25
			(1989),
			issue 3,
		pp. 195-206
- 
Kalas, Josef:
		Some results on the asymptotic behaviour of the equation $\dot z=f(t,z)$ with a complex-valued function $f$.
		
			(English).
Archivum Mathematicum,
		vol. 21
			(1985),
			issue 4,
		pp. 195-199
- 
Kalas, Josef:
		Asymptotic nature of solutions of the equation $\dot z=f(t,z)$ with a complex valued function $f$.
		
			(English).
Archivum Mathematicum,
		vol. 20
			(1984),
			issue 2,
		pp. 83-94
- 
Kalas, Josef:
		On a “Liapunov like” function for an equation $\dot z=f(t,z)$ with a complex-valued function $f$.
		
			(English).
Archivum Mathematicum,
		vol. 18
			(1982),
			issue 2,
		pp. 65-76
- 
Kalas, Josef:
		Asymptotic behaviour of equations $\dot z=q(t,z)-p(t)z^2$ and $\ddot x=x\varphi (t,\dot xx^{-1})$.
		
			(English).
Archivum Mathematicum,
		vol. 17
			(1981),
			issue 4,
		pp. 191-206
- 
Kalas, Josef:
		Asymptotic properties of the solutions of the equation $\dot z=f(t,z)$ with a complex-valued function $f$.
		
			(English).
Archivum Mathematicum,
		vol. 17
			(1981),
			issue 3,
		pp. 113-123
- 
Kalas, Josef:
		On the asymptotic behaviour of the equation $dz/dt=f(t,z)$ with a complex-valued function $f$.
		
			(English).
Archivum Mathematicum,
		vol. 17
			(1981),
			issue 1,
		pp. 11-22
- 
Kalas, Josef:
		Asymptotic behaviour of the system of two differential equations.
		
			(English).
Archivum Mathematicum,
		vol. 11
			(1975),
			issue 3,
		pp. 175-186
 
Partner of
