| Title:
|
Contributions to the asymptotic behaviour of the equation $\dot z=f(t,z)$ with a complex-valued function $f$ (English) |
| Author:
|
Kalas, Josef |
| Language:
|
English |
| Journal:
|
Czechoslovak Mathematical Journal |
| ISSN:
|
0011-4642 (print) |
| ISSN:
|
1572-9141 (online) |
| Volume:
|
40 |
| Issue:
|
1 |
| Year:
|
1990 |
| Pages:
|
31-45 |
| . |
| Category:
|
math |
| . |
| MSC:
|
34E99 |
| idZBL:
|
Zbl 0705.34055 |
| idMR:
|
MR1037349 |
| DOI:
|
10.21136/CMJ.1990.102357 |
| . |
| Date available:
|
2008-06-09T15:31:06Z |
| Last updated:
|
2020-07-28 |
| Stable URL:
|
http://hdl.handle.net/10338.dmlcz/102357 |
| . |
| Reference:
|
[1] J. Kalas: On a "Liapunov-like" function for an equation $\dot z=f(t,\,z)$ with a complex-valued function $f$.Arch. Math. (Brno) 18 (1982), 65-76. MR 0683347 |
| Reference:
|
[2] J. Kalas: Asymptotic nature of solutions of the equation $\dot z=f(t,\,z)$ with a complex-valued function $f$.Arch. Math. (Brno) 20 (1984), 83-94. Zbl 0564.34005, MR 0784859 |
| Reference:
|
[3] J. Kalas: Some results on the asymptotic behaviour of the equation $\dot z=f(t,\,z)$ with a complex-valued function $f$.Arch. Math. (Brno) 21 (1985), 195-199. Zbl 0585.34037, MR 0833131 |
| Reference:
|
[4] J. Kalas: Asymptotic behaviour of the solutions of the equation $dz/dt = f(t, z)$ with a complex-valued function $f$.Colloquia Mathematica Societatis János Bolyai, 30. Qualitative Theory of Differential Equations, Szeged (Hungary), 1979, pp. 431 - 462. MR 0680606 |
| Reference:
|
[5] J. Kalas: On certain asymptotic properties of the solutions of the equation $\dot z=f(t,\,z)$ with a complex-valued function $f$.Czech. Math. J. 33 (1983), 390-407. MR 0718923 |
| Reference:
|
[6] C. Kulig: On a system of differential equations.Zeszyty Naukowe Univ. Jagiellonskiego, Prace Mat., Zeszyt 9, 77 (1963), 37-48. Zbl 0267.34029, MR 0204763 |
| Reference:
|
[7] M. Ráb: Equation $Z\sp{\prime} =A(t)-Z\sp{2}$ coefficient of which has a small modulus.Czech. Math. J. 27 (1971), 311-317. MR 0287096 |
| Reference:
|
[8] M. Ráb: Geometrical approach to the study of the Riccati differential equation with complexvalued coefficients.J. Diff. Equations 25 (1977), 108-114. MR 0492454, 10.1016/0022-0396(77)90183-8 |
| Reference:
|
[9] Z. Tesařová: The Riccati differential equation with complex-valued coefficients and application to the equation $x\sp{\prime\prime}+P(t)x\sp{\prime} +Q(t)x=0$.Arch. Math. (Brno) 18 (1982), 133-143. MR 0682101 |
| . |