[1] D. K. Burke: 
Covering properties. in: Handbook of Set-Theoretic Topology (K. Kunen, J. E. Vaughan, eds.), North Holland-Amsterdam, 1984, 347-422. 
MR 0776628 | 
Zbl 0569.54022[2] F. Cafiero: Misura e lntegrazione. Rome, 1959, 308-315.
[3] P. Capek: 
On small systems. Acta Fac. Rerum Natur. Univ. Comenian Math. 34 (1979), 93-101. 
MR 0568339 | 
Zbl 0436.28003[6] M. Fréchet: 
Sur les ensembles compacts de fonctions measurables. Fund. Math. 9 (1927), 25-32. 
DOI 10.4064/fm-9-1-25-32[7] R. J. Gardner, W. F. Pfeffer: 
Borel measures. in: Handbook of Set-Theoretic Topology (K. Kunen, J. E. Vaughan, eds.), North Holland-Amsterdam, 1984, 961-1043. 
MR 0776641 | 
Zbl 0593.28016[10] J. Hejduk, E. Wajch: 
Compactness in the sense of the convergence with respect to a small system. Math. Slov. 39 (1989), 267-275. 
MR 1016344 | 
Zbl 0681.28002[17] T. Neubrunn, B. Riečan: 
Miera a Integrál. Bratislava, 1981, 485 - 497. 
MR 0657765[18] J. Niewiarowski: 
Convergence of sequences of real functions with respect to small systems. Math. Slov. 38 (1988), 333-340. 
MR 0978763 | 
Zbl 0659.28004[19] K. Prikry: 
Changing measures into accessible cardinals. Dissert. Math. 68 (1970), 1-52. 
MR 0262075[21] B. Riečan: 
Abstract formulation of some theorems of measure theory. Mat. Fyz. Časopis SAV 16 (1966), 268-273. 
MR 0222235[22] C. A. Rogers, J. E. Jayne: $K$-analytic sets. in: Analytic Sets (C. A. Rogers, J. E. Jayne, eds.), London, 1980, 1-181.
[23] D. A. Vladimirov: 
On the existence of invariant measures on Boolean algebras. Dokl. Akad. Nauk SSSR 157 (1964), 764-766. 
MR 0169985[24] D. A. Vladimirov: 
Invariant measures on Boolean algebras. Mat. Sb. (N.S.) 67 (109) (1965), 440-460. 
MR 0206206[25] E. Wajch: 
On small systems and compact families of Borel functions. Math. Slov. 40 (1990), 63-69. 
MR 1094973 | 
Zbl 0739.28002