Previous |  Up |  Next


Dual variational principles for an elliptic partial differential equation of the second order with combined boundary conditions are formulated. A posteriori error estimates are obtained and for some class of problems the convergence of approximate solutions of the dual problem is proved. A numerical example is presented. The analysis of the approximate solutions suggests that especially when we are interested mainly in the values of co-normal derivatives on the boundary the dual method can serve an effective method for a approximate solution.
[1] Aubin J. P., Burchard H. G.: Some aspects of the method of the hypercircle applied to elliptic variational problems. 1 - 68, Numerical solution of partial differential equations - II, SYNSPADE 1970, ed. B. Hubbard, Academic Press, New York 1971. MR 0285136
[2] Babuška I., Kellog R. D.: Numerical solution of the neutron diffusion equation in the presence of corners and interfaces. Numerical reactor calculations, Panel IAEA-SM-154/59, Vienna 1973.
[3] Bramble J. H., Zlámal M.: Triangular elements in the finite element method. Math, of Соmр., 24, (1970), 809-821. MR 0282540
[4] Grenacher F.: A posteriori error estimates for elliptic partial differential equations. Technical Note BN-743, Institute for Fluid Dynamics and Applied Mathematics, University of Maryland, 1972.
[5] Kang C. M., Hansen K. F.: Finite element method for the neutron diffusion equation. Trans. Am. Nucl. Soc. 14 (1971), 199.
[6] Kaper H. G., Leaf G. K., Lindeman A. J.: Applications of finite element method in reactor mathematics. ANL-7925, Argonne National Laboratory, Argonne, Illinois, 1972.
[7] Nečas J.: Les méthodes directes en théorie des équations elliptiques. Academia, Praha 1967. MR 0227584
[8] Semenza L. A., Lewis E. E., Rossow E. C.: A finite element treatment of neutron diffusion. Trans. Am. Nucl. Soc. 14, (1971), 200.
[9] Semenza L. A., Lewis E. E., Rossow E. C.: Dual finite element methods for neutron diffusion. Trans. Am. Nucl. Soc., 14 (1971), 662.
[10] Strang G., Fix G. J.: An analysis of the finite element method. Prentice-Hall, Englewood Cliffs, New Jersey, 1973. MR 0443377 | Zbl 0356.65096
[11] Taylor A. E.: Introduction to functional analysis. John Willey & Sons, New York, 1967. MR 0098966
[12] Vacek J.: Dual variational principles for neutron diffusion equation. thesis, MFF UK, Praha, 1974 (in Czech).
[13] Yasinsky J. B., Kaplan S.: On the use of dual variational principles for the estimation of error in approximate solutions of diffusion problems. Nucl. Sci. Eng., 31 (1968), 80. DOI 10.13182/NSE68-A18010
[14] Zlámal M., Ženíšek A.: Mathematical aspects of the finite element method. Trans. of ČSAV, 81 (1971), Praha.
Partner of
EuDML logo