Previous |  Up |  Next


Title: Estimation of error in approximate numerical integration near a simple pole using Chebyshev points (English)
Author: Bose, Subhas Chandra
Author: Kundu, Madhav Chandra
Language: English
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 25
Issue: 6
Year: 1980
Pages: 400-407
Summary lang: English
Summary lang: Czech
Summary lang: Russian
Category: math
Summary: In this note quadrature formula with error estimate for functions with simple pole is discussed. Chebyshev points of the second kind are used as the nodes of integration. (English)
Keyword: quadrature formula
Keyword: error estimate
Keyword: functions with simple pole
Keyword: Chebyshev points
MSC: 41A55
MSC: 65D30
MSC: 65D32
idZBL: Zbl 0457.65007
idMR: MR0596846
DOI: 10.21136/AM.1980.103878
Date available: 2008-05-20T18:15:26Z
Last updated: 2020-07-28
Stable URL:
Reference: [1] N. I. Achieser: Theory of approximation.(translated by C. J. Hyman). Frederick Ungar Publishing Co., New York, 1956. Zbl 0072.28403, MR 0095369
Reference: [2] N. K. Basu: Approximate integration near a simple pole using Chebyshev abscissas.Mathematica, Vol. 13 (36), 5-11 (1971). MR 0301898
Reference: [3] E. Isaacson H. B. Keller: Analysis of numerical methods.John Wiley and Sons, Inc., New York, 1966. MR 0201039
Reference: [4] M. C. Kundu: Approximate integration near a simple pole using Chebyshev points of the second kind.Bulletin Mathematique, T. 21 (69), nr. 3-4(1977). Zbl 0368.65018, MR 0474711
Reference: [5] W. A. Markoff: Über die Funktionen, die an einem gegebenen Intervall möglichst wenig von Null abweichen.Math. Ann. 77, 213-258 (1916). MR 1511855, 10.1007/BF01456902
Reference: [6] G. Opitz: Genäherte Integration in der Nähe eines einfachen Pols.ZAMM, 41, 263-264 (1961). Zbl 0102.11703, MR 0126104, 10.1002/zamm.19610410607


Files Size Format View
AplMat_25-1980-6_3.pdf 1.220Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo