Article
Keywords:
existence of solution; nonlinear relation between intensity of stresses and deformations
Summary:
A nonlinear system of equations generalizing von Kármán equations is studied. The existence of a solution is proved and the relation between the solutions of the considered system and the solutions of von Kármán system is studied. The system considered is derived in a former paper by Lepig under the assumption of a nonlinear relation between the intensity of stresses and deformations in the constitutive law.
References:
                        
[1] Ю.Р. Лепик: 
Равновесие гибких упруго-пластических пластинок при больших прогибах. Инжинерный сборник, том XX, 1956, 37-51. 
Zbl 0995.90522 
[2] Н. Ф. Ершов: 
Об упруго-пластическом изгибе пластинок при больших прогибах. Строительная механика и расчет сооружений. Н.-З, 1962. 
Zbl 1005.68507 
[3] О. John J. Nečas: 
On the solvability of von Kármán equations. Aplikace matematiky 20 (1975), 48-62, 
MR 0380099 
[4] I. Hlaváček J. Naumann: 
Inhomogeneous boundary value problems for the von Kármán equations, I. Aplikace matematiky 19 (1974), 253-269. 
MR 0377307 
[5] J. Franců: 
On Signorini problem for von Kármán equations (The case of angular domain). Aplikace matematiky 24 (1979), 355 - 371. 
MR 0547039 | 
Zbl 0479.73041 
[6] G. H. Knightly: 
An existence theorem for the von Kármán equations. Arch. Rat. Mech. Anal., (1967), 233-242. 
MR 0220472 | 
Zbl 0162.56303 
[7] И. В. Скрыпник: 
Нелинейные еллщтгические уравнения высшего порядка. ,Наукова думка", Киев 1973. 
Zbl 1131.90321 
[8] R. Kodnár: Non-linear problems of the orthogonal anisotropic shallow shells. Proceedings of summer school "Theory of nonlinear operators". Abhandlungen der Akademie der Wissenschaften der DDR. N-6, 1977.