[1] R. Abrams L. Kerzner: 
A simplified test for optimality. Journal of Optimization Theory and Applications. 25 (1978), 161-170. 
DOI 10.1007/BF00933262 | 
MR 0484413 
[2] A. Ben-Israel A. Ben-Tal S. Zlobec: 
Optimality in Nonlinear Programming: A Feasible Directions Approach. Wiley-Interscience, New York 1981. 
MR 0607673 
[3] A. Ben-Israel A. Ben-Tal A. Charnes: 
Necessary and sufficient conditions for a Pareto-optimum in convex programming. Econometrica 45 (1977), 811 - 820. 
DOI 10.2307/1912673 | 
MR 0452684 
[4] A. Ben-Israel T. N. E. Greville: 
Generalized Inverses: Theory and Applications. Wiley-Interscience, New York 1974. 
MR 0396607 
[5] B. Brosowski: 
On parametric linear optimization. Optimization and Operations Research, Springer Verlag Lecture Notes in Economics and Mathematical Systems No. 157(R. Henn, B. Korte and W. Oettli, editors), Berlin, 1978, pp. 37-44. 
MR 0525726 | 
Zbl 0405.90072 
[6] G. B. Dantzig J. Folkman N. Shapiro: 
On the continuity of the minimum set of a continuous function. Journal of Mathematical Analysis and Applications 17 (1967), 519-548. 
DOI 10.1016/0022-247X(67)90139-4 | 
MR 0207426 
[7] I. I. Eremin N. N. Astafiev: 
Introduction to the Theory of Linear and Convex Programming. Nauka, Moscow, 1976. (In Russian.) 
MR 0475825 
[9] A. V. Fiacco: 
Convergence properties of local solutions of sequences of mathematical programming problems in general spaces. Journal of Optimization Theory and Applications 13 (1974), 1-12. 
DOI 10.1007/BF00935606 | 
MR 0334946 | 
Zbl 0255.90047 
[10] J. Gauvin J. W. Tolle: 
Differential stability in nonlinear programming. SlAM Journal on Control and Optimization 15 (1977), 294-311. 
DOI 10.1137/0315020 | 
MR 0441352 
[11] H. J. Greenberg W. P. Pierskalla: 
Extensions of the Evans-Gould stability theorems for mathematical programs. Operations Research 20 (1972), 143-153. 
DOI 10.1287/opre.20.1.143 | 
MR 0316101 
[13] W. Krabs: 
Stetige Abänderung der Daten bei nichtlinearer Optimierung und ihre Konsequenzen. Operations Research Verfahren XXV 1 (1977), 93-113. 
Zbl 0401.90094 
[14] B. Kummer: 
Global stability of optimization problems. Mathematische Operationsforschung und Statistik, series Optimization (1977). 
MR 0478618 | 
Zbl 0376.90083 
[15] O. Mangasarian: 
Nonlinear Programmirg. McGraw-Hill, New York, 1969. 
MR 0252038 
[17] V. D. Mazurov: 
The solution of an ill-posed linear optimization problem under contradictory conditions. Supplement to Ekonomika i Matematičeskii Metody, Collection No. 3 (1972), 17-23. (In Russian.) 
MR 0391950 
[18] M. Z. Nashed (editor): Generalized Inverses and Applications. Academic Press, New York, 1976.
[19] F. Nožička J. Guddat H. Hollatz B. Bank: Theorie der linearen parametrische Optimierung. Akademie - Verlag, Berlin, 1974.
[20] M. S. A. Osman: 
Qualitative analysis of basic notions in parametric convex programming, I. Aplikace Matematiky 22 (1977), 318-332. 
MR 0449692 | 
Zbl 0383.90097 
[21] M. S. A. Osman: 
Qualitative analysis of basic notions in parametric convex programming, II. Aplikace Matematiky 22 (1977), 333-348. 
MR 0449693 | 
Zbl 0383.90098 
[22] S. M. Robinson: A characterization of stability in linear programming. MRC Technical Report 1542, University of Wisconsin, Madison (1975).
[24] A. N. Tihonov V. Y. Arsenin: 
Solutions of Ill-Posed Problems. Winston, Washington D. C., 1977. 
MR 0455365 
[26] H. Wolkowicz: 
Calculating the cone of directions of constacy. Journal of Optimization Theory and Applications 25 (1978), 451-457. 
DOI 10.1007/BF00932906 | 
MR 0525723 
[27] S. Zlobec: 
Marginal values for arbitrarily perturbed convex  programs. Glasnik Matematički (1982, forthcoming). 
MR 0658001 
[28] S. Zlobec A. Ben-Israel: Perturbed convex programs: continuity of optimal solutions and optimal values. Operations Research Verfahren XXXI 1 (1979), 737-749.
[29] S. Zlobec A. Ben-Israel: 
Duality in convex programming: a linearization approach. Mathematische Operationsforschung und Statistik, series Optimization 10 (1979), 171 - 178. 
DOI 10.1080/02331937908842560 | 
MR 0548525 
[30] S. Zlobec B. Craven: 
Stabilization and determination of the set  of minimal   binding constraints in convex programming. Mathematische   Operationsforschung und Statistik, series Optimization 12 (1981), 203-220, 
DOI 10.1080/02331938108842721 | 
MR 0619646 
[31] S. Zlobec R. Gardner A. Ben-Israel: 
Regions of stability for arbitrarily perturbed convex programs. In Mathematical Programming with Data Perturbations I (A. V.  Fiacco, ed.), M. Dekker, New York, 1982, 69-89. 
MR 0652938