[1] M. Fiedler V. Pták: 
On aggregation in matrix theory and its applications to numerical inverting of large matrices. Bull. Acad. Pol. Sci. Math. Astr. Phys. 11 (1963) 757-759. 
MR 0166911[2] N. S. Kurpeľ: 
Projection-iterative Methods of Solution of Operator Equations. (Russian). Naukova Dumka, Kiev 1968. 
MR 0254691[3] D. P. Looze N. R. Sandell, Jr.: 
Analysis of decomposition algorithms via nonlinear splitting functions. J. Optim. Theory Appl. 34 (1981) 371-382. 
DOI 10.1007/BF00934678 | 
MR 0628203[4] A. Ju. Lučka: 
Projection-iterative Methods of Solution of Differential and Integral Equations. (Russian). Naukova Dumka, Kiev 1980. 
MR 0598991[5] A. Ju. Lučka: Convergence criteria of the projection-iterative method for nonlinear equations. (Russian). Preprint 82.24, Institute of Mathematics AN Ukrain. SSR, Kiev 1982.
[6] J. Mandel: Convergence of some two-level iterative methods. (Czech).  PhD Thesis, Charles University, Prague 1982.
[7] J. Mandel: 
On some two-level iterative methods. In: Defect Correction - Theory and Applications (K. Böhmer, H. J. Stetter. editors), Computing Supplementum Vol.  5, Springer-Verlag, Wien, to appear. 
MR 0782691 | 
Zbl 0552.65049[8] J. Mandel B. Sekerka: 
A local convergence proof for the iterative aggregation method. Linear Algebra Appl. 51 (1983), 163-172. 
MR 0699731[9] O. Pokorná I. Prágerová: Approximate matrix invertion by aggregation. In:  Numerical Methods of Approximation Theory, Vol. 6 (L. Collatz, G. Meinhardus, H. Werner, editors), Birghäuser Verlag, Basel-Boston-Stuttgart 1982.
[11] R. S. Varga: 
Matrix Iterative Analysis. Prentice Hall Inc., Englewood Cliffs, New Jersey 1962. 
MR 0158502[12] T. Wazewski: 
Sur une procédé de prouver la convergence des approximations successives sans utilisation des séries de comparaison. Bull. Acad. Pol. Sci. Math. Astr. Phys. 8 (1960) 47-52. 
MR 0126109