Previous |  Up |  Next


Title: Dual method for solving a special problem of quadratic programming as a subproblem at nonlinear minimax approximation (English)
Author: Lukšan, Ladislav
Language: English
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 31
Issue: 5
Year: 1986
Pages: 379-395
Summary lang: English
Summary lang: Russian
Summary lang: Czech
Category: math
Summary: The paper describes the dual method for solving a special problem of quadratic programming as a subproblem at nonlinear minimax approximation. Two cases are analyzed in detail, differring in linear dependence of gradients of the active functions. The complete algorithm of the dual method is presented and its finite step convergence is proved. (English)
Keyword: nonlinear minimax approximation
Keyword: method of recursive quadratic programming
Keyword: dual method
Keyword: convergence
Keyword: algorithm
MSC: 65K05
MSC: 90C20
idZBL: Zbl 0621.65061
idMR: MR0863033
DOI: 10.21136/AM.1986.104215
Date available: 2008-05-20T18:30:43Z
Last updated: 2020-07-28
Stable URL:
Reference: [1] M. S. Bazaraa C. M. Shetty: Nonlinear programming. Theory and algorithms.New York: Wiley 1979. MR 0533477
Reference: [2] C. Charalambous J. W. Bandler: Nonlinear minimax optimization as a sequence of least p-th optimization with finite values of p.Faculty Engn., McMaster University, Hamilton, Ontario, Canada, Kept. SOC-3, 1973.
Reference: [3] C. Charalambous: Acceleration of the least p-th algorithm for minimax optimization with engineering applications.Math. Programming 17, 270-297, (1979). MR 0550846, 10.1007/BF01588251
Reference: [4] V. F. Demyanov V. N. Malozemov: Introduction to minimax.Chap. 3, § 5. New York: Wiley 1974. MR 0475823
Reference: [5] D. Goldfarb: Extension of Davidon's variable metric method to maximization under linear inequality and equality constraints.SIAM J. Appl. Math. 17, 739-764, (1969). Zbl 0185.42602, MR 0290799, 10.1137/0117067
Reference: [6] D. Goldfarb A. U. Idnani: A numerically stable dual method for solving strictly convex quadratic programs.The City College of New York, Dept. of Computer Sci., Rept. 81- 102, (1981).
Reference: [7] J. Hald K. Madsen: Combined LP and Quasi-Newton methods for minimax optimization.Math. Programming 20, 49-62, (1981). MR 0594023, 10.1007/BF01589332
Reference: [8] S. P. Han: Variable metric methods for minimizing a class of nondifferentiable functions.Math. Programming 20, 1 - 13, (1981). Zbl 0441.90095, MR 0594019
Reference: [9] L. Lukšan: Variable metric methods for linearly constrained nonlinear minimax approximation.Computing 30, 315-334, (1983). MR 0706672, 10.1007/BF02242138
Reference: [10] K. Madsen: An algorithm for minimax solution of overdetermined systems of nonlinear equations.J. Inst. Math. Appl. 16, 321-328, (1975). MR 0443341, 10.1093/imamat/16.3.321
Reference: [11] M. J. D. Powell: A fast algorithm for nonlinearly constrained optimization calculations.In "Numerical analysis, Dundes 1977", (G. A. Watson, ed.), Lecture Notes in Mathematics 630, Berlin: Springer-Verlag 1978. MR 0483447


Files Size Format View
AplMat_31-1986-5_3.pdf 2.424Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo