| Title:
             | 
On the existence of free vibrations for a beam equation when the period is an irrational multiple of the length (English) | 
| Author:
             | 
Feireisl, Eduard | 
| Language:
             | 
English | 
| Journal:
             | 
Aplikace matematiky | 
| ISSN:
             | 
0373-6725 | 
| Volume:
             | 
33 | 
| Issue:
             | 
2 | 
| Year:
             | 
1988 | 
| Pages:
             | 
94-102 | 
| Summary lang:
             | 
English | 
| Summary lang:
             | 
Russian | 
| Summary lang:
             | 
Czech | 
| . | 
| Category:
             | 
math | 
| . | 
| Summary:
             | 
The author examined non-zero $T$-periodic (in time) solutions for a semilinear beam equation under the condition that the period $T$ is an irrational multiple of the length. It is shown that for a.e. $T \in R^1$ (in the sense of the Lebesgue measure on $R^1$) the solutions do exist provided the right-hand side of the equation is sublinear. (English) | 
| Keyword:
             | 
nonuniqueness | 
| Keyword:
             | 
time-periodical solutions | 
| Keyword:
             | 
semilinear equation | 
| Keyword:
             | 
irrational periods | 
| Keyword:
             | 
dual variational method | 
| MSC:
             | 
35B10 | 
| MSC:
             | 
35K60 | 
| MSC:
             | 
35L70 | 
| MSC:
             | 
58E05 | 
| MSC:
             | 
73K12 | 
| idZBL:
             | 
Zbl 0684.35057 | 
| idMR:
             | 
MR0940709 | 
| DOI:
             | 
10.21136/AM.1988.104291 | 
| . | 
| Date available:
             | 
2008-05-20T18:34:06Z | 
| Last updated:
             | 
2020-07-28 | 
| Stable URL:
             | 
http://hdl.handle.net/10338.dmlcz/104291 | 
| . | 
| Reference:
             | 
[1] J. M. Coron: Periodic solutions of a nonlinear wave equation without assumption of monotonicity.Math. Ann. 262 (1983), 273-285. Zbl 0489.35061, MR 0690201, 10.1007/BF01455317 | 
| Reference:
             | 
[2] D. G. Costa M. Willem: Multiple critical points of invariant functional and applications.Séminaire de Mathématique 2-éme Semestre Université Catholique de Louvain. | 
| Reference:
             | 
[3] I. Ekeland R. Temam: Convex analysis and variational problems.North-Holland Publishing Company 1976. MR 0463994 | 
| Reference:
             | 
[4] N. Krylová O. Vejvoda: A linear and weakly nonlinear equation of a beam: the boundary value problem for free extremities and its periodic solutions.Czechoslovak Math. J. 21 (1971), 535-566. MR 0289918 | 
| . |