Previous |  Up |  Next


viscous compressible bipolar fluid; initial boundary value problem; global existence of weak solutions; finite channel
The paper contains the proof of global existence of weak solutions viscous compressible isothermal bipolar fluid of initial boundary value in a finite channel.
[1] M. Feistauer J. Nečas V. Šverák: On the weak compactness of the equation of the compressible flow. Preprint MFF UK Prague (1988).
[2] A. Kufner O. John S. Fučík: Functional spaces. Academia, Prague (1977).
[3] J. Nečas M. Šilhavý: Viscous multipolar fluids. (To appear)
[4] J. Nečas I. Hlaváček: Mathematical Theory of Elastic and Elastico-Plastic Bodies. (1982).
[5] J. Nečas: Introduction to the theory of nonlinear elliptic equations. John Wiley (1986). MR 0874752
[6] J. L. Lions: Quelques methodes de resolution des problems aux limites non lineaires. Dunod, Paris (1969). MR 0259693
[7] J. Nečas A. Novotný M. Šilhavý: Global solution to the compressible isothermal multipolar fluid. (To apear)
[8] J. L. Lions E. Magenes: Problemes aux limites non homogenes et application. Dunod, Paris (1968).
[9] M. Padula: Existence of global solutions for 2-dimensional viscous compressible flow. J. Funct. Anal. 69 (1986). DOI 10.1016/0022-1236(86)90108-4 | MR 0864756
[10] H. Gajevski K. Gröger K. Zacharias: Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen. Academia-Verlag, Berlin (1974). MR 0636412
[11] J. Kurzweil: English translation: Ordinary Differential Equations. Elsevier, Amsterdam- Oxford-New York-Tokyo (1986).
[12] J. Nečas: Les methodes directes en theorie des equations elliptiques. Academia, Prague (1967). MR 0227584
[13] K. Rektorys a kol.: English translation: Survey of Applicable Mathematics. SNTL, Praha (1968). MR 0241025
Partner of
EuDML logo