Previous |  Up |  Next


convection-diffusion problem with dominated convection; Petrov-Galerkin method; reaction-diffusion equation; test functions; Petrov-Galerkin method; Dirichlet problem; algorithm; numerical examples
A general construction of test functions in the Petrov-Galerkin method is described. Using this construction; algorithms for an approximate solution of the Dirichlet problem for the differential equation $-\epsilon u^n + pu' + qu=f$ are presented and analyzed theoretically. The positive number $\epsilon$ is supposed to be much less than the discretization step and the values of $\left|p\right|,q$. An algorithm for the corresponding two-dimensional problem is also suggested and results of numerical tests are introduced.
[1] J. E. Akin: Application and implementation of finite element methods. Academic Press, London, New York, 1982. MR 0693291 | Zbl 0535.73063
[2] J. W. Barret K. W. Morton: The mathematics of finite elements and applications IV. Academic Press, London, New York (1982), 403-411.
[3] P. Bar-Yoseph M. Israeli: An asymptotic finite element method for improvement of solutions of boundary layer problems. Numer. Math. Vol. 49, 4 (1986), 425-438. DOI 10.1007/BF01389540 | MR 0853664
[4] J. H. Bramble B. E. Hubbard: New monotone type approximations for elliptic problems. Math. Соmр. 18 (1964), 349-367. MR 0165702
[5] A. N. Brooks T. J. R. Hughes: Streamline upwind Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Computer Math. in Appl. Mech. and Eng. 32 (1982), 199-259. DOI 10.1016/0045-7825(82)90071-8 | MR 0679322
[6] P. Ciarlet: The finite element method for elliptic problems. North-Holland, Amsterdam, 1978. MR 0520174 | Zbl 0383.65058
[7] J. Dalík: An apriori error estimate of an approximation of a two-point boundary value problem by the Petrov-Galerkin method. (Czech). Knižnice obd. a věd. spisů VUT Brno, Sv. A-35 (1988), 19-28. MR 0960239
[8] E. P. Doolan J. J. H. Miller W. H. A. Schilders: Uniform numerical methods for problems with initial and boundary layers. Boole Press, Dublin, 1980. MR 0610605
[9] R. Ghwinski: Numerical nethods for nonlinear variational problems. Appendix II. Springer- -Verlag, New York, Berlin, 1984. MR 0737005
[10] P. W. Hemker P. M. De Zeeuw: Defect correction for the solution of a singular perturbation problem. (preprint). Math. centrum, 1982. MR 0685785
[11] P. W. Hemker: Numerical aspects of singular perturbation problems. (preprint). Math. centrum, Amsterdam, 1982. MR 0708292
[12] T. lkeda: Maximum principle in finite element models for convection-diffusion phenomena. North-Holland, Amsterdam, New York, Oxford, 1983.
[13] C. Johnson U. Nävert: Analysis of some finite element methods for advection-diffusion problems. (research report). Chalmers Univ. of Techn., Goteborg, 1980. MR 0605502
[14] C. Johnson U. Nävert J. Pitkäranta: Finite elements method for linear hyperbolic problems. (research report). Chalmers Univ. of Techn., Göteborg, 1982.
[15] U. Nävert: A finite element method for convection-diffusion problems. (thesis). Chalmers Univ. of Techn., Göteborg, 1982.
[16] U. Nävert: The streamline diffusion method for timedependent convection-diffusion problems with small diffusion. (research report). Chalmers Univ. of Techn., Göteborg, 1981.
[17] E. O'Riordan: Singularly perturbed finite element methods. Numer. Math. Vol. 44, 3 (1984), 425-434. DOI 10.1007/BF01405573 | MR 0757497 | Zbl 0569.65065
[18] G. D. Raithby: Skew upstream differencing schemes for problems involving fluid flow. Comp. Meth. Appl. Mech. Eng. Vol 9 (1976), 153-164. DOI 10.1016/0045-7825(76)90058-X | MR 0443576 | Zbl 0347.76066
[19] P. A. Raviart: Les méthodes d'élements finis en mécanique des fluides II. 3. Edditions Eyrolles, Paris, 1981. MR 0631851
Partner of
EuDML logo