| Title: | Weight minimization of elastic bodies weakly supporting tension. I. Domains with one curved side (English) | 
| Author: | Hlaváček, Ivan | 
| Author: | Křížek, Michal | 
| Language: | English | 
| Journal: | Applications of Mathematics | 
| ISSN: | 0862-7940 (print) | 
| ISSN: | 1572-9109 (online) | 
| Volume: | 37 | 
| Issue: | 3 | 
| Year: | 1992 | 
| Pages: | 201-240 | 
| Summary lang: | Czech | 
| . | 
| Category: | math | 
| . | 
| Summary: | Shape optimization of a two-dimensional elastic body is considered, provided the material is weakly supporting tension. The problem generalizes that of a masonry dam subjected to its own weight and to the hydrostatic presure. Existence of an optimal shape is proved. Using a penalty method and finite element technique, approximate solutions are proposed and their convergence is analyzed. (English) | 
| Keyword: | existence | 
| Keyword: | masonry dam | 
| Keyword: | hydrostatic pressure | 
| Keyword: | penalty method | 
| Keyword: | convergence | 
| Keyword: | shape optimization | 
| Keyword: | weight minimization | 
| Keyword: | finite elements | 
| MSC: | 49Q10 | 
| MSC: | 65K10 | 
| MSC: | 65N30 | 
| MSC: | 73C99 | 
| MSC: | 73V20 | 
| MSC: | 73k40 | 
| MSC: | 74P10 | 
| MSC: | 74P99 | 
| MSC: | 74S05 | 
| MSC: | 74S30 | 
| idZBL: | Zbl 0767.73047 | 
| idMR: | MR1157456 | 
| DOI: | 10.21136/AM.1992.104504 | 
| . | 
| Date available: | 2008-05-20T18:43:38Z | 
| Last updated: | 2020-07-28 | 
| Stable URL: | http://hdl.handle.net/10338.dmlcz/104504 | 
| . | 
| Reference: | [1] G. Anzellotti: A class of non-coercive functionals and masonry-like materials.Ann. Inst. H. Poincaré 2 (1985), 261-307. MR 0801581, 10.1016/S0294-1449(16)30398-5 | 
| Reference: | [2] S. Bennati A. M. Genai C. Padovani: Trapezoidal gravity dams in pure compression.CNUCE - C.N.R., Internal Rep. C88-22, May 1988. | 
| Reference: | [3] S. Bennati M. Lucchesi: The minimal section of a triangular masonry dam.Мессаniса J. Ital. Assoc. Theoret. Appl. Mech. 23 (1988), 221-225. | 
| Reference: | [4] R. A.  Brockman: Geometric sensitivity analysis with isoparametric finite elements.Comm. Appl. Numer. Methods 3 (1987), 495-499. Zbl 0623.73081, MR 0937760, 10.1002/cnm.1630030609 | 
| Reference: | [5] M. Giaquinta G. Giusti: Researches on the equilibrium of masonry structures.Arch. Rational Mech. Anal. 88 (1985), 359-392. MR 0781597, 10.1007/BF00250872 | 
| Reference: | [6] I. Hlaváček: Optimization of the shape of axisymmetric shells.Apl. Mat. 28 (1983), 269-294. MR 0710176 | 
| Reference: | [7] I. Hlaváček: Inequalities of Korn's type, uniform with respect to a class of domains.Apl. Mat. 34 (1989), 105-112. Zbl 0673.49003, MR 0990298 | 
| Reference: | [8] I. Hlaváček R. Mäkinen: On the numerical solution of axisymmetric domain optimization problems.Appl. Math. 36 (1991), 284-304. MR 1113952 | 
| Reference: | [9] J. Nečas I. Hlaváček: Mathematical Theory of Elastic and Elasto-Plastic Bodies. An Introduction.Elsevier, Amsterdam, 1981. MR 0600655 | 
| Reference: | [10] O. Pironneau: Optimal Shape Design for Elliptic Systems.Springer-Verlag, New York, 1983. MR 0725856 | 
| . |