MSC:
35J65,
65H10,
65N22,
73E99,
73V20,
74B99,
74C99,
74D99 | MR 1241445 | Zbl 0805.65048 | DOI: 10.21136/AM.1993.104564

Full entry |
PDF
(16.9 MB)
Feedback

nonlinear systems; inexact Newton-like methods; composite iterations; deformation theory of plasticity; numerical experiments; nonlinear elliptic problems; generalized Picard method; secant modulus method; preconditioned conjugate gradients; convergence

References:

[1] Blaheta R.: **Incomplete factorization preconditioning techniques for linear elasticity problems**. Z. angew. Math. Mech. 71 (1991), T638-640. Zbl 0751.73063

[2] Blaheta R.: **Displacement decomposition-incomplete factorization preconditioning for linear elasticity problems**. to appear in J. Numer. Lin. Alg. Appl. 1992/1993.

[3] Desai C.S., H. J. Siriwardane: **Constitutive laws for engineering materials with emphasis on geologic materials**. Prentice Hall, Englewood Cliffs, NJ, 1984. Zbl 0543.73004

[4] Kohut R., R. Blaheta: **Efficient iterative methods for numerical solution of plasticity problems**. Proc. of the NUMEG'92 Conference, Prague 1992, vol. 1, pp. 129-134.

[5] Nečas J.: **Introduction to the theory of nonlinear elliptic equations**. Teubner Texte zur Mathematik, Band 52, Leipzig, 1983. MR 0731261

[6] Nečas J., I. Hlaváček: **Mathematical theory of elastic and elasto-plastic bodies: An introduction**. Elsevier, Amsterdam, 1981. MR 0600655

[7] Dembo R. S., Eisenstat S. C., T. Steingang: **Inexact Newton methods**. SIAM J. Numer. Anal. 19 (1982), 400-408. DOI 10.1137/0719025 | MR 0650059

[8] Deuflhard P.: **Global inexact Newton methods for very large scale nonlinear problems**. Impact of Соmр. in Science and Engng. 3 (1991), 366-393. MR 1141306 | Zbl 0745.65032