[1] P. J. COHEN: The independence of the axiom of choice. mimeographed, Stanford Univ. 1963.
[2] K. GÖDEL: The consistency of the axiom of choice [ ...]. Princeton Univ. Press 1940.
[3] P. HÁJEK, P. VOPĚNKA: 
Some permutation submodels of the model $\nabla $. Bull. Acad. Polon. Sci. 14 (1966), 1-7. 
MR 0194321[4] A. HAJHAL: 
On a consistency theorem connected with the generalized continuum problem. Zeitschr. Math. Logik 2 (1956), 131-136. 
MR 0091914[5] T. JECH, P. VOPĚNKA: Generalized Souslin's hypothesis. to appear in Zeitschr. math. Logik.
[6] A. S. JESENIN, VOL'PIN: 
Nedokazuemost gipotezy Suslina bez pomošči aksiomy vybora [...]. (in Russian), Doklady Akad. Nauk SSSR 96 (1954), 9-12. 
MR 0062694[7] P. KUREPA: 
L'hypothèse de ramification. Comptes Rendus Acad. Sci. Paris 202 (1936), 185-187. 
Zbl 0014.39402[8] A. LÉVY: 
Indépendence conditionnelle de $V=L$ [.. ]. ibid., 245 (1957), 1582-3. 
MR 0089155[9] A. LÉVY: 
A generalization of Gödel's notion of constructibility. Journ. Symb. Logic 25 (1960), 147-155. 
MR 0142468 | 
Zbl 0119.25204[11] J. R. SHOENFIELD: 
On the independence of the axiom of constructibility. ibid., 81 (1959), 537-540. 
MR 0106833 | 
Zbl 0201.32702[12] W.  SIERPIŃSKI: 
Sur un problème de la théorie générale des ensembles équivalent au problème de Souslin. Fund. Math. 35 (1948), 165-174. 
MR 0027817[13] M. J. SOUSLIN: Problème 3. ibid., 1 (1920), 223.
[14] P. VOPĚNKA: 
The limit of sheaves [...]. Bull. Acad. Polon. Sci. 13 (1965), 189-192. 
MR 0182570[15] P. VOPĚNKA: 
On $\nabla $-model of set theory. ibid., 13 (1965), 267-272. 
MR 0182571[16] P. VOPĚNKA: 
Properties of $\nabla $ -model. ibid., 13 (1965), 441-444. 
MR 0189984[17] P. VOPĚNKA: 
$\nabla $ -models in which GCH does not hold. ibid., 14 (1966), 95-99. 
MR 0200142[18] P. VOPĚNKA: 
General theory of $\nabla $ -models. Comment. Math. Univ. Carolinae 8 (1967). 
MR 0214460