[1] M. A. AKCOGLU: 
A pointwise ergodic theorem in $L_p$ spaces. Canad. J. Math. (to appear). 
MR 0550405 | 
Zbl 1044.47500[2] M. A. AKCOGLU R. V. CHACON: 
A local ratio theorem. Canad. J. Math.  22 (1970), 545-552, 
MR 0264031[3] H. BUSEMANN W. FELLER: Zur Differentiation der Lebesgueschen Integrale. Fund. Math. 22 (1934), 226-256,
[4] N. DUNFORD J. T. SCHWARTZ: Linear Operators. part I, Interscience, New York, 1958.
[5] E. HILLE R. S. PHILLIPS: 
Functional Analysis and Semigroups. rev. ed., Amer. Math. Soc., Providence, RI,  1957. 
MR 0089373[8] Y. KUBOKAWA: 
A local ergodic theorem for semi-groups on $L_p$. Tohoku Math. J. 26 (1974), 411-422. 
MR 0352405[9] Y. KUBOKAWA: 
Ergodic theorems for contraction semigroups. J. Math. Soc. Japan 27 (1975), 184-193. 
MR 0397444 | 
Zbl 0299.47007[10] S. A. MOGRATH: A pointwise Abelian ergodic theorem for $L_p$ semigroups, $l\leq p < \infty$. to appear.
[11] D. S. ORNSTEIN: 
The sums of iterates of a positive operator. Advances in Probability and Related Topics, vol. 2 (edited by F. Ney), 87-115, Dekker, New York, 1970. 
MR 0286977 | 
Zbl 0321.28013[12] T. R. TERRELL: 
Local ergodic theorems for $n$-parameter semigroups of operators. Contributions to Ergodic Theory and Probability, 262-278, Springer-Verlag, Berlin/Heidelberg/New York, 1970., 
MR 0268357 | 
Zbl 0204.45406[13] K. YOSIDA: 
Functional Analysis. 1st ed., Springer-Verlag, 1965. 
Zbl 0126.11504