[1] J. BANAŚ: Relative measures of noncompactness in Banach spaces. Ph.D. Thesis, Lublin 1978 (in Polish).
[2] J. BANAŚ K. GOEBEL: 
Measures of noncompactness in Banach spaces. (preprint). 
MR 0591679[3] J. DANEŠ: 
On densifying and related mappings and their applications in nonlinear functional analysis. Theory of nonlinear operators, Akademie-Verlag, Berlin 1974, 15-56. 
MR 0361946[4] J. DANEŠ: 
Some fixed point theorems in metric and Banach spaces. Comment. Math. Univ. Carolinae 12 (1971), 37-50. 
MR 0287398[5] G. DARBO: 
Punti uniti in transformazioni a condominio non compatto. Rend. Sem. Math. Univ. Padova, 24 (1955), 84-92. 
MR 0070164[6] K. GOEBEL: Thickness of sets in metric spaces and its applications to the fixed point theory. Habilit. Thesis, Lublin 1970 (in Polish).
[7] K. GOEBEL W. RZYMOWSKI: 
An existence theorem for the equation $x' - f(t,x)$ in Banach space. Bull. Acad. Polon. Sci., Ser. Math. Astronom. et Phys., 18, 7 (1970), 367-370. 
MR 0269957[8] I. T. GOHBERG L. S. GOLDENŠTEIN A. S. MARKUS: Investigation of some properties of bounded linear operators in connection with their q-norms. Učen. Zap. Kishinev. Un-ta, 29 (1957), 29-36 (in Russian).
[9] R. JANICKA W. KACZOR: On the construction of aome measures of noncompactness. Ann. Univ.  Mariae Curie -Skłodovaka, Sectio A (preprint).
[10] K. KURATOWSKI: Sur les espaces complets. Fund. Math. 15 (1930), 301-309.
[11] B. N. SADOVSKIĬ: 
Limit compact and condensing operators. Russian Math. Surveys, 27 (1972), 86-144. 
MR 0428132[12] B. N. SADOVSKIĬ: 
On a fixed point principle. Funkc. Analiz i ego Přilož. 1 (1967), no. 2, 74-76 (in Russian). 
MR 0211302