[1] C. L. BELNA M. J. EVANS P. D. HUMKE: 
Most directional cluster sets have common values. Fund. Math. 101 (1978), 1-10. 
MR 0512239[2] H. BLUMBERG: A theorem on arbitrary functions of two variables with applications. Fund. Math. 16 (1930), 17-24.
[3] A. M. BRUCKNER: 
Differentiation of real functions. Lecture notes in Mathematics, No. 659, Springer Verlag, 1978. 
MR 0507448 | 
Zbl 0382.26002[4] A. M. BRUCKNER C. GOFFMAN: 
The boundary behaviour of real functions in the upper half plane. Rev. Roumaine Math. Pures Appl. 11 (1966), 507-518. 
MR 0206173[5] E. P. DOLŽENKO: 
The boundary properties of arbitrary functions. Russian, Izv. Akad. Nauk SSSR, Ser. Mat. 31 (1967), 3-14. 
MR 0217297[6] M. J. EVANS P. D. HUMKE: 
Directional cluster sets ana essential directional cluster sets of real functions defined in the upper half plane. Rev. Roumaine Math. Pures Appl. 23 (1978), 533-542. 
MR 0492273[7] V. JARNÍK: Sur les fonctions de la première classe de Baire. Bull. Internat. Acad. Sci. Boheme 1926.
[8] V. JARNÍK: Sur les fonctions de deux variables reélies. Fund. Math. 27 (1936), 147-150.
[9] J. LUKEŠ L. ZAJÍČEK: 
When finely continuous functions are of the first class of Baire. Comment. Math. Univ. Carolinae 18 (1977), 647-657. 
MR 0457646[10] F. MIGNOT: 
Controle dans les inéquations variationelles elliptiques. J. Functional Analysis 22 (1976), 130-185. 
MR 0423155 | 
Zbl 0364.49003[13] L. ZAJÍČEK: 
On cluster sets of arbitrary functions. Fund. Math. 83 (1974), 197-217. 
MR 0338294[14] L. ZAJÍČEK: 
Sets of $\sigma $ -porosity and sets of $\sigma $ -porosity $(q)$. Časopis pěst. mat. 101 (1976), 350-359. 
MR 0457731 | 
Zbl 0341.30026