[1] Dale ALSPACH: 
A fixed point free nonexpansive map. Proc. Amer. Math.  Soc. 82 (1981), 423-424. 
MR 0612733[2] L. B. CIRIC: 
A generalization of Banach's contraction principle. Proc.  Amer. Math. Soc. 45 (1974), 267-273. 
MR 0356011 | 
Zbl 0291.54056[3] W. G. DOTSON, Jr.: 
Fixed point theorems for non-expansive mappings in star-shaped subsets of Banach spaces. J. London Math. Soc. 4 (1972), 408-410. 
MR 0296778[4] M. EDELSTEIN: 
An extension of Banach's contraction principle. Proc. Amer. Math. Soc. 12 (1961), 7-10. 
MR 0120625 | 
Zbl 0096.17101[5] S. ITOH: 
Some fixed point theorems in metric spaces. Fundamenta Mathematicae 102 (1979), 109-117. 
MR 0525934 | 
Zbl 0412.54054[6] M. A. KRASNOSEL'SKII G. M. VAINIKKO, al.: 
Approximate solutions of operator equations. Wolters-Noordhoff publishing, Groningen 1972. 
MR 0385655[7] H. V. MACHODO: 
A characterization of convex subsets of normed spaces. Kodai Math. Sem. Rep. 25 (1973), 307-320. 
MR 0326359[8] S. A. NAIMPALLY K. L. SINGH: Fixed and common fixed points in convex metric spaces. preprint.
[9] S. A. NAIMPALLY K. L. SINGH J. H. M. WHITFIELD: 
Fixed points in convex metric spaces. preprint. 
MR 0759448[10] B. E. RHOADES: 
Some fixed point theorems for generalized nonexpansive mappings. preprint. 
MR 1048011 | 
Zbl 0497.47031[11] Robert SINE: Remarks on the example of Alspach. preprint.
[12] L. A. TALMAN: 
Fixed points for condensing multifunctions in metric spaces with convex structure. Kodai Math. Sem. Rep. 29 (1977), 62-70. 
MR 0463985 | 
Zbl 0423.54039[13] W. TAKAHASHI: 
A convexity in metric spaces and nonexpansive mappings I. Kodai Math. Sem. Rep. 22 (1970), 142-149. 
MR 0267565