[1] Akahira M., Takeuchi K.: 
Asymptotic efficiency of statistical estimators: concepts and higher order asymptotic efficiency. Lecture Notes in Statistics 7, Springer-Verlag, 1981. 
MR 0617375 | 
Zbl 0463.62026[2] Chan L. K., Rhodin L. S.: 
Robust estimation of location using optimally chosen sample quantiles. Technometrics 22, 1980, 225-237. 
Zbl 0428.62031[3] Filliben J. J.: Simple and robust estimation of the location parameter of a symmetric distribution. Hi. D. dissertation, Princeton University, Princeton, N.Y., 1969.
[4] Joiner B. L., Rosenblatt J. R.: Some properties of the range in samples from Tukey's symmetric X -distributions. J. Amer. Statist. Assoc. 66, 1971, 394-399.
[5] Jones D. H.: 
An efficient adaptive distribution-free test for location. J. Amer. Statist. Assoc. 74, 1979, 822-828. 
MR 0556475 | 
Zbl 0421.62026[6] Ramberg J. S., Schmeiser B. W.: 
An approximate method for generating symmetric random variables. Comm. of the ACM, 15, 1972, 987-990. 
MR 0331711 | 
Zbl 0244.65005[7] Ramberg J. S., Schmeiser B. W.: 
An approximative method for generating asymmetric random variables. Comm. of the ACM, 17, 1974, 78-82. 
MR 0331711[8] Ramberg J. S., Tadikamalla P. R., Dudewicz E. J., Mykytka E. F.: 
A probability distribution and its uses in fitting data. Technometrics 21, 1979, 201-214. 
Zbl 0403.62004[9] Tukey J. W.: The practical relationship between the common transformations of percentages or counts and of amounts. Technical Report # 36, Statistical Research Group, Princeton University, Princeton, N.Y., 1960.