[1] R. Azencott E. Wilson: 
Homogeneous manifolds with negative curvature. Part 2, Mem. Amer. Math. Soc. 8 (1976), n. 178. 
MR 0426002[2] M. Božek: 
Existence of generalized symmetric Riemannian spaces with solvable isometry group. Čas. pěst. mat. 105 (1980), 368-384. 
MR 0597914[3] N. Bourbaki: 
Groupes ei alge'bres de Lie. Chap. 1-3, Hermann, Paris 1972. 
MR 0573068[4] V. Gorbačevič A. Oniščik: Lie groups of transformations. (Russian), Itogi nauki i techhiki 20 (1988), 103-240.
[5] A. Gray: 
Riemannian manifolds with geodesic symmetries of order 3. J. Diff. Geom. 7 (1972), 343-369. 
MR 0331281 | 
Zbl 0275.53026[6] S. Helgason: 
Differential geometry. Lie groups and symmetric spaces, Acad. Press, New York 1978. 
MR 0514561 | 
Zbl 0451.53038[7] D. Hertzig: 
The structure of Frobenius algebraic groups. Atner. J. Math. 3 (1961), 421-431. 
MR 0137708 | 
Zbl 0117.27203[8] N. Jacobson: 
A note on automorphisms and derivations of Lie algebras. Proc. Amer. Math. Soc. 8 (1955), 281-283. 
MR 0068532 | 
Zbl 0064.27002[9] O. Kowalski: 
Generalized symmetric spaces. LN in Mathematics, Vol. 805, Springer, Berlin 1980. 
MR 0579184 | 
Zbl 0431.53042[10] V. Kreknin: 
On the solvability of Lie algebras with a regular automorphism of a finite order. (Russian), DAN SSSR 150 (1963), 467-469. 
MR 0157990[11] V. Platonov: 
Algebraic groups with almost regular automorphism. (Russian), lev. AN SSSR 31 (1967), 687-696. 
MR 0217078[12] A. Tralle: 
One new existence theorem for the generalized symmetric spaces of solvable type. Ann. Glob. Anal. and Geom. 8 (1990) (to appear). 
MR 1088508 | 
Zbl 0666.53028[13] E. Vinberg A. Oniščik: Seminar on Lie groups and algebraic groups. (Russian).
[14] E. Wilson: 
Isometry groups on homogeneous nilmanifolds. Geom. Dedic. 12 (1982), 337-346. 
MR 0661539 | 
Zbl 0489.53045