[1] Block L.: 
Stability of periodic orbits in the theorem of Šarkovskii. Proc. Amer. Math. Soc. 81 (1981), 333-336. 
MR 0593484 | 
Zbl 0462.54029[2] Blokh A. M.: 
On limit behaviour of one dimensional dynamical systems. (Russian), Preprint (1982). 
MR 0643772[3] Blokh A. M.: 
On sensitive mappings of an interval (Russian). Uspekhi Mat. Nauk 37, No. 2 (1982), 189-190. 
MR 0650765[4] Guckenheimer J.: 
Sensitive  dependence to initial conditions for one-dimensional maps. Commun. Math. Phys. 70 (1979), 133-160. 
MR 0553966 | 
Zbl 0429.58012[5] Janková K., Smítal J.: 
A characterization of chaos. Bull. Austral. Math. Soc. 34 (1986), 283-292. 
MR 0854575[6] Kloeden P. E.: 
Chaotic difference equations are dense. Bull. Austral. Math. Soc. 15 (1976), 371-379. 
MR 0432829 | 
Zbl 0335.39001[7] Li T. Y., Yorke J. A.: 
Period three implies chaos. Amer. Math. Monthly 82 (1975), 985-992. 
MR 0385028 | 
Zbl 0351.92021[8] Misiurewicz M., Szlenk W.: 
Entropy of piecevnse monotone mappings. Astérisque 50 (1977), 299-310. 
MR 0487998[9] Misiurewicz M., Szlenk W.: 
Entropy of piecewise monotone mappings. Studia Math. 67 (1980), 45-63. 
MR 0579440 | 
Zbl 0445.54007[11] Piórek J.: 
On the generic chaos in dynamical systems.  Acta Math. Univ. Iagell. 25 (1985), 293-298. 
MR 0837847[12] Preston C: 
Iterates of Maps on an Interval. Lecture Notes in Math. 999, Springer-Verlag, 1983. 
MR 0706078 | 
Zbl 0582.58001[13] Šarkovskii A. N.: 
Coexistence of cycles of continuous maps of the line into itself. (Russian), Ukrain. Math. Zh. 16 (1964), 61-71. 
MR 0159905[14] Šarkovskii A. N., Maistrenko Ju. L., Romanenko E. Ju.: 
Difference Equations and their Applications. (Russian), Naukova Dumka, Kiev, 1986. 
MR 0895825