| Title:
|
On a “Liapunov like” function for an equation $\dot z=f(t,z)$ with a complex-valued function $f$ (English) |
| Author:
|
Kalas, Josef |
| Language:
|
English |
| Journal:
|
Archivum Mathematicum |
| ISSN:
|
0044-8753 (print) |
| ISSN:
|
1212-5059 (online) |
| Volume:
|
18 |
| Issue:
|
2 |
| Year:
|
1982 |
| Pages:
|
65-76 |
| . |
| Category:
|
math |
| . |
| MSC:
|
34D05 |
| MSC:
|
34D20 |
| MSC:
|
34E05 |
| MSC:
|
34M99 |
| idZBL:
|
Zbl 0498.34039 |
| idMR:
|
MR683347 |
| . |
| Date available:
|
2008-06-06T06:10:32Z |
| Last updated:
|
2012-05-09 |
| Stable URL:
|
http://hdl.handle.net/10338.dmlcz/107125 |
| . |
| Reference:
|
[1] Hartman P.: Ordinary Differential Equations.Wiley, New York/London/Sydney, 1964. Zbl 0125.32102, MR 0171038 |
| Reference:
|
[2] Kalas J.: Asymptotic behaviour of the solutions of the equation dz/dt = f(t, z) with a complex-valued function f.Proceedings of the Colloquium on Qualitative Theory of Differential Equations, August 1979, Szeged-Hungary, Seria Colloquia Mathematica Societatis János Bolyai & North-Holland Publishing Company, pp. 431-462. MR 0680606 |
| Reference:
|
[3] Kalas J.: On the asymptotic behaviour of the equation dz/dt =f(t,z) with a complex-valued function f.Arch. Math. (Brno) 17 (1981), 11-22. Zbl 0475.34028, MR 0672484 |
| Reference:
|
[4] Kalas J.: On certain asymptotic properties of the solutions of the equation $\dot{z} = f(t, z)$ with a complex-valued function f.Czech. Math. Journal, to appear. MR 0718923 |
| Reference:
|
[5] Kalas J.: Asymptotic properties of the solutions of the equation $\dot{z} = f(t, z)$ with a complex-valued function f.Arch. Math. (Brno) 17 (1981), 113-124. MR 0672315 |
| Reference:
|
[6] Kalas J.: Asymptotic behaviour of equations $\dot{z] = q(t, z) - p(t) z^2$ and $\ddot{x} = x \varphi(t, \dot{x} x^{-1})$.Arch. Math. (Brno) 17 (1981), 191-206. MR 0672659 |
| Reference:
|
[7] Ráb M.: The Riccati differential equation with complex-valued coefficients.Czech. Math. Journal 20 (1970), 491-503. MR 0268452 |
| Reference:
|
[8] Ráb M.: Geometrical approach to the study of the Riccati differential equation with complex-valued coefficients.J. Diff. Equations 25 (1977), 108-114. MR 0492454 |
| Reference:
|
[9] Sverdlove R.: Vector fields defined by complex functions.J. Differential Equations 34 (1979), 427-439. Zbl 0431.34034, MR 0555320 |
| . |