[1] S. J. Aldersley, G. W. Horndeski: 
Conformally invariant tensorial concomitants of a pseudo-Riemannian metric. Utilitas Math. 17 (1980), 197-223. 
MR 0583141 | 
Zbl 0441.53011[2] I. M. Anderson: 
On the structure of divergence-free tensors. J. Math. Phys. 19 (1978), 2570-2575. 
MR 0512978 | 
Zbl 0429.53048[3] I. M. Anderson: 
Tensorial Euler-Lagrange expressions and conservation laws. Aequationes Math. 17 (1978), 255-291. 
MR 0493675 | 
Zbl 0418.49041[4] I. M. Anderson: 
Natural variational principles on Riemannian manifolds. Annals of Math. 120 (1984), 329-370. 
MR 0763910 | 
Zbl 0565.58019[5] I. M. Anderson: 
The variational bicomplex. (to appear). 
Zbl 0881.35069[6] I. M. Anderson: The minimal order solution to the inverse problem. (to appear).
[7] I. M. Anderson: Natural differential operators on the variational bicomplex. (to appear).
[8] I. M. Anderson, T. Duchamp: 
On the existence of global variational principles. Amer. J. Math. 102 (1980), 781-868. 
MR 0590637 | 
Zbl 0454.58021[9] I. M. Anderson, T. Duchamp: 
Variational principles for second order quasi-linear scalar equations. J. Diff. Eqs. 51 (1984), 1-47. 
MR 0727029 | 
Zbl 0533.49010[10] D. E. Betounes: 
Extensions of the classical Cartan form. Phys. Rev. D 29 (1984), 599-606. 
MR 0734285[11] K. S. Cheng, W. T. Ni: 
Conditions for the local existence of metric in a generic affine manifold. Math. Proc. Camb. Phil. Soc. 87 (1980), 527-534. 
MR 0556932 | 
Zbl 0442.53020[12] S. S. Chern, J. Simons: 
Characteristic forms and geometric invariants. Annals of Math. 99 (1974), 48-69. 
MR 0353327 | 
Zbl 0283.53036[14] V. V. Dodonov V. I. Man'ko, V. D. Skarzhinsky: 
The inverse problem of the variational calculus and the nonuniqueness of the quantization of classical systems. Hadronic J. 4 (1981), 1734-1803. 
MR 0632443[15] V. V. Dodonov V. I. Man'ko, V. D. Skarzhinsky: 
Classically equivalent Hamiltonians and ambiguities of quantization: a particle in a magnetic field. Il Nuovo Cimento 69B (1982), 185-205. 
MR 0669159[16] J. Douglas: 
Solution to the inverse problem of the calculus of variations. Trans. Amer. Math. Soc. 50 (1941), 71-128. 
MR 0004740[17] M. Ferraris: 
Fibered connections and Global Poincaré-Cartan forms in higher-order Calculus of Variations. in "Proc. of the Conference on Differential Geometry and its Applications, Nové Město na Moravě, Vol. II. Applications", Univerzita Karlova, Praga, 1984, pp. 61-91. 
MR 0793200 | 
Zbl 0564.53013[18] V. N. Gusyatnikova A. M. Vinogradov V. A. Yumaguzhin: 
Secondary differential operators. J. Geom. Phys. 2 (1985), 23-65. 
MR 0845467[19] M. Henneaux: 
Equations of motions, commutation relations and ambiguities in the Lagrangian formalism. Ann. Phys. 140 (1982), 45-64. 
MR 0660925[20] M. Henneaux, L. C. Shepley: 
Lagrangians for spherically symmetric potentials. J. Math. Phys. 23 (1982), 2101-2104. 
MR 0680007 | 
Zbl 0507.70022[21] M. Henneaux: 
On the inverse problem of the calculus of variations in field theory. J. Phys. A: Math. Gen. 17 (1984), 75-85. 
MR 0734109 | 
Zbl 0557.70019[22] S. Hojman, H. Harleston: 
Equivalent Lagrangians: Multidimensional case. J. Math. Physics 22 (1981), 1414-1419. 
MR 0626131 | 
Zbl 0522.70024[23] G. W.  Horndeski: 
Differential operators associated with the Euler-Lagrange operator. Tensor 28 (1974), 303-318. 
MR 0356143 | 
Zbl 0289.49045[24] J.  Klein: 
Geometry of sprays. Lagrangian case. Principle of least curvature. in "Proc. IUTAM-ISIMM Symposium on Modern Developments in Analytical Mechanics, Vol. 1", (Benenti, Francavigilia, Lichnerowicz, eds.), Atti dela Accademia delle Scienze di Torino, 1983, pp. 177-196. 
MR 0773487 | 
Zbl 0566.58012[25] I. Kolář: 
A geometrical version of the higher order Hamilton formalism in fibered manifolds. J. Geom. Phys. 1 (1984), 127-137. 
MR 0794983[26] L. Littlejohn: 
On the classification of differential equations having orthogonal polynomial solutions. Annali di Mathematica pure ed applicata 138 (1984), 35-53. 
MR 0779537 | 
Zbl 0571.34003[27] D. Lovelock: 
The Einstein tensor and its generalizations. J. Math. Physics 12 (1971), 498-501. 
MR 0275835 | 
Zbl 0213.48801[28] J. M. Masqué: 
Poincaré-Cartan forms in higher order variational calculus on fibred manifolds. Revista Matematica Iberoamericana 1 (1985), 85-126. 
MR 0850411[29] P. J. Olver: 
Applications of Lie Groups to Differential Equations. Springer-Verlag, New York, 1986. 
MR 0836734 | 
Zbl 0588.22001[30] P. J. Olver: Darboux's theorem for Hamiltonian differential operators. (to appear).
[31] H. Rund: 
A Cartan form for the field theory of Carathéodory in the calculus of variations. in "Lecture Notes in Pure and Applied Mathematics No. 100: Differential Geometry, Calculus of Variations, and Their Applications", G. M. Rassias and T. M. Rassias (eds), Marcel Dekker, New York, 1985, pp. 455-470. 
MR 0822534 | 
Zbl 0578.49025[32] W. Sarlet: 
Symmetries and alternative Lagrangians in higher-order mechanics. Phys. Lett. A 108 (1985), 14-18. 
MR 0786789[33] W. Sarlet F. Cantrijin, M. Crampin: 
A new look at second-order equations and Lagrangian mechanics. J. Phys. A: Math. Gen. 17 (1984), 1999-2009. 
MR 0763792[34] F. Takens: 
Symmetries, conservation laws and variational principles. in "Lecture Notes in Mathematics No. 597", Springer-Verlag, New York, 1977, pp. 581-603. 
MR 0650304 | 
Zbl 0368.49019[35] F. Takens: 
A global version of the inverse problem to the calculus of variations. J. Diff. Geom. 14 (1979), 543-562. 
MR 0600611[36] G. Thompson: 
Second order equation fields and the inverse problem of Lagrangian dynamics. (to appear). 
MR 0917639 | 
Zbl 0638.70013[37] E. Tonti: 
Inverse problem: Its general solution. in "Lecture Notes in Pure and Applied Mathematics No. 100: Differential Geometry, Calculus of Variations and Their Applications", Marcel Decker, New York, 1985, pp. 497-510. 
MR 0822537 | 
Zbl 0583.49010[38] T. Tsujishita: 
On variation bicomplexes associated to differential equations. Osaka J. Math. 19 (1982), 311-363. 
MR 0667492 | 
Zbl 0524.58041[39] W. M. Tulczyjew: 
The Euler-Lagrange resolution. in "Lecture Notes in Mathematics No. 836," Springer-Verlag, New York, 1980, pp. 22-48. 
MR 0607685 | 
Zbl 0456.58012[40] A. M. Vinogradov: On the algebra-geometric foundation  of Lagrangian field theory. Sov. Math. Dokl. 18 (1977), 1200-1204.
[41] A. M. Vinogradov: 
The C-spectral sequence, Lagrangian formalism and conservation laws I, II. J. Math. Anal. Appl. 100 (1984), 1-129. 
MR 0739952[42] E. Witten: 
Global aspects of current algebra. Nucl. Phys. B223 (1983), 422-432. 
MR 0717915