[2] Agmon, S.: 
On the eigenfunctions and on the eigenvalues of general elliptic boundary value problems. Comm. Pure Appl. Math. 15 (1962), 119-147. 
MR 0147774 | 
Zbl 0109.32701[3] Agmon, S.: 
Lectures on Elliptic Boundary Value Problems. Van Nostrand, Princeton, N.J. (1965). 
MR 0178246 | 
Zbl 0142.37401[4] Agmon, S., Douglis, A. and Nirenberg, L.: 
Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I. Comm. Pure Appl. Math. 12 (1959), 623-727. 
MR 0125307[5] Agranovitch, M. S., Vishik, M. I.: 
Elliptic problems with a parameter and parabolic problems of general type. Russian Math. Surveys 19 (1964), 53-157. 
MR 0192188[6] Beals, R.: 
Indefinite Sturm–Liouville problems and half–range completeness. J. Differential Equations 56 (1985), 391-407. 
MR 0780497 | 
Zbl 0512.34017[7] Bers, L., Schechter, M.: 
Elliptic Equations. In: Partial Differential Equations, Lectures in Appl. Math.III, Interscience, New York, 1964, 131-299. 
MR 0165224[8] Bognár, J.: 
Indefinite Inner Product Spaces. Springer, New York, 1974. 
MR 0467261[9] Coddington, E. A., Levinson, N.: 
Theory of Ordinary Differential Equations. McGraw–Hill, New York, 1955. 
MR 0069338[10] Faierman, M.: 
On the eigenvalues of nonselfadjoint problems involving indefinite weights. Math. Ann. 282 (1988), 369-377. 
MR 0967019 | 
Zbl 0629.34024[11] Faierman, M.: 
Elliptic problems involving an indefinite weight. Trans. Amer. Math. Soc. 320 (1990), 253–279. 
MR 0962280 | 
Zbl 0721.35051[12] Faierman, M.: 
Non–selfadjoint elliptic problems involving an indefinite weight. Comm. Partial Differential Equations 15 (1990), 939–982. 
MR 1070235 | 
Zbl 0721.35051[13] Faierman, M.: 
An oblique derivative problem involving an indefinite weight. Dekker, New York, 1991, 147-154, In: Differential Equations, Lecture Notes in Pure and Appl. Math. 127. 
MR 1096750 | 
Zbl 0865.35096[14] Faierman, M.: 
An elliptic boundary value problem in a half–space. Boll. Un. Mat. Ital. 5-B (1991), 905-937. 
MR 1146780 | 
Zbl 0768.35021[15] Faierman, M.: 
Generalized parabolic cylinder functions. Asymptotic Anal. 5 (1992), 517-531. 
MR 1169356 | 
Zbl 0753.34041[16] Faierman, M.: 
A priori bounds for solutions of an elliptic equation. Proc. Roy. Soc. Edinburgh (to appear). 
MR 1200196 | 
Zbl 0791.35013[17] Fleckinger, J., Lapidus, M. L.: 
Eigenvalues of elliptic boundary value problems with an indefinite weight function. Trans. Amer. Math. Soc. 295 (1986), 305-324. 
MR 0831201[18] Fleckinger, J., Lapidus, M. L.: 
Remainder estimates for the asymptotics of elliptic eigenvalue problems with indefinite weights. Arch. Rational Mech. Anal. 98 (1987), 329-356. 
MR 0872751[19] Hess, P.: 
On the relative completeness of the generalized eigenvectors of elliptic eigenvalue problems with indefinite weight functions. Math. Ann. 270 (1985), 467-475. 
MR 0774371 | 
Zbl 0572.47006[20] Hess, P.: 
On the asymptotic distribution of eigenvalues of some non–selfadjoint problems. Bull. London Math. Soc. 18 (1986), 181-184. 
MR 0818823[21] Hess, P.: 
On the spectrum of elliptic operators with respect to indefinite weights. Linear Algebra Appl. 84 (1986), 99-109. 
MR 0872278 | 
Zbl 0621.47026[22] Hörmander, L.: 
Uniqueness theorems for second order elliptic differential equations. Comm. Partial Differential Equations 8 (1983), 21-64. 
MR 0686819[23] Kato, T.: 
Perturbation Theory for Linear Operators. 2nd edn., Springer, New York, 1976. 
MR 0407617 | 
Zbl 0836.47009[24] Lions, J. L., Magenes, E.: 
Non-Homogeneous Boundary Value Problems and Applications. Vol. I, Springer, New York, 1972. 
MR 0350177[25] Markus, A. S.: 
Introduction to the Spectral Theory of Polynomial Operator Pencils. Amer. Math. Soc., Providence, R.I. (1988). 
MR 0971506 | 
Zbl 0678.47005[26] Schechter, M.: 
General boundary value problems for elliptic partial differential equations. Comm. Pure Appl. Math. 12 (1959), 457-482. 
MR 0125323 | 
Zbl 0087.30204[27] Whittaker, E. T., Watson, G. N.: 
A Course of Modern Analysis. 4th edn., University Press, Cambridge, 1965. 
MR 1424469