Article
Keywords:
neutral differential equation; oscillatory (nonoscillatory) solution; quasi derivatives
Summary:
The authors study the n-th order nonlinear neutral differential equations with the quasi – derivatives $L_n[x(t)+(-1)^r P(t) x(g(t))]+\delta Q(t) f(x(h(t))) = 0,$ where $\ n \ge 2,\ r \in \lbrace 1,2\rbrace ,\ $ and $ \delta = \pm 1.$ There are given sufficient conditions for solutions to be either oscillatory or they converge to zero.
References:
                        
[1] Graef, J. R., Spikes, P. W.: 
On the oscillation of an $n$th-order nonlinear neutral delay differential equation. J. Comp. Appl. Math. 41 (1992), 35-40. 
MR 1181706[2] Jaroš, J., Kusano, T.: 
Oscillation properties of first order nonlinear functional differential equations of neutral type. Diff. and Int. Equat. (1991), 425-436. 
MR 1081192[3] Marušiak, P.: 
Oscillatory properties of functional differential systems of neutral type. Czech. Math. J. 43 (1993), 649-662. 
MR 1258427[4] Šeda, V.: 
Nonoscillatory solutions of differential equations with deviating argument. Czech. Math. J. 36 (111) (1986), 93-107. 
MR 0822871[5] Zafer, A., Dahiya, R. S.: 
Oscillation of bounded solutions of neutral differential equations. Appl. Math. Lett. 2 (1993), 43-46. 
MR 1347773