Previous |  Up |  Next

Article

Title: A contact metric manifold satisfying a certain curvature condition (English)
Author: Cho, Jong Taek
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 31
Issue: 4
Year: 1995
Pages: 319-333
Summary lang: English
.
Category: math
.
Summary: In the present paper we investigate a contact metric manifold satisfying (C) $(\bar{\nabla }_{\dot{\gamma }}R)(\cdot ,\dot{\gamma })\dot{\gamma }=0$ for any $\bar{\nabla }$-geodesic $\gamma $, where $\bar{\nabla }$ is the Tanaka connection. We classify the 3-dimensional contact metric manifolds satisfying (C) for any $\bar{\nabla }$-geodesic $\gamma $. Also, we prove a structure theorem for a contact metric manifold with $\xi $ belonging to the $k$-nullity distribution and satisfying (C) for any $\bar{\nabla }$-geodesic $\gamma $. (English)
Keyword: contact metric manifolds
Keyword: Tanaka connection
Keyword: Jacobi operator
MSC: 53C15
MSC: 53C25
MSC: 53C35
idZBL: Zbl 0849.53030
idMR: MR1390592
.
Date available: 2008-06-06T21:29:47Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107554
.
Reference: [1] Berndt, J. and Vanhecke, L.: Two natural generalizations of locally symmetric spaces.Diff. Geom. Appl. 2 (1992), 57-80. MR 1244456
Reference: [2] Blair, D. E.: Contact manifolds in Riemannian geometry.Lecture Notes in Math. Springer-Verlag, Berlin-Heidelberg-New-York. 509 (1976), . Zbl 0319.53026, MR 0467588
Reference: [3] Blair, D. E., Koufogiorgos, T., and Sharma, R.: A classification of 3-dimensional contact metric manifolds with $Q\phi =\phi Q$.Kodai Math.J. 13 (1990), 391-401. MR 1078554
Reference: [4] Blair, D. E. and Sharma, R.: Three-dimensional locally symmetric contact metric manifolds.to appear in Boll.Un.Mat.Ital.. MR 1083268
Reference: [5] Blair, D. E. and Vanhecke, L.: Symmetries and $\phi $-symmetric spaces.Tôhoku Math.J. 39 (1987), 373-383. MR 0902576
Reference: [6] Cartan, E.: Lecons sur la géométrie des espaces de Riemann, 2nd éd..Gauthier-Villars, Paris (1946). MR 0020842
Reference: [7] Cho, J. T.: On some classes of almost contact metric manifolds.Tsukuba J. Math. 19 (1995), 201-217. Zbl 0835.53054, MR 1346762
Reference: [8] Cho, J. T.: On some classes of contact metric manifolds.Rend.Circ.Mat. Palermo XLIII (1994), 141–160. Zbl 0817.53019, MR 1305332
Reference: [9] Cho, J. T.: Generalizations of locally symmetric spaces and locally $\phi $-symmetric spaces.Niigata Univ. Doctorial Thesis (1994), .
Reference: [10] Olszak, Z.: On contact metric manifolds.Tôhoku Math. J. 31 (1979), . Zbl 0397.53026, MR 0538923
Reference: [11] Takahashi, T.: Sasakian $\phi $-symmetric spaces.Tôhoku Math. J. 29 (1977), 91-113. MR 0440472
Reference: [12] Tanaka, N.: On non-degenerate real hypersurfaces, graded Lie algebras and Cartan connections.Japan J. Math. 2 (1976), 131-190. Zbl 0346.32010, MR 0589931
Reference: [13] Tanno, S.: Ricci curvature of contact Riemannian manifolds.Tôhoku Math. J. 40 (1988), 441-448. MR 0957055
Reference: [14] Tanno, S.: Variational problems on contact Riemannian manifolds,.Trans. Amer. Math. Soc. 314 (1989), 349-379. Zbl 0677.53043, MR 1000553
Reference: [15] Tricerri, F. and Vanhecke, L.: Homogeneous structures on Riemannian manifolds.London Math. Soc. Lecture Note Ser. 83, Cambridge University Press, London (1983), . MR 0712664
.

Files

Files Size Format View
ArchMathRetro_031-1995-4_10.pdf 276.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo