| Title: | Higher order contact of real curves in a real hyperquadric (English) | 
| Author: | Villarroel, Y. | 
| Language: | English | 
| Journal: | Archivum Mathematicum | 
| ISSN: | 0044-8753 (print) | 
| ISSN: | 1212-5059 (online) | 
| Volume: | 32 | 
| Issue: | 1 | 
| Year: | 1996 | 
| Pages: | 57-73 | 
| Summary lang: | English | 
| . | 
| Category: | math | 
| . | 
| Summary: | Let $\Phi $ be an hermitian quadratic form, of maximal rank and index $(n,1)$% , defined over a complex $(n+1)$ vectorial space $V$. Consider the real hyperquadric defined in the complex projective space $P^nV$ by \[ Q=\{[\varsigma ]\in P^nV,\;\Phi (\varsigma )=0\}, \] let $G$ be the subgroup of the special linear group which leaves $Q$ invariant and $D$ the $(2n-2)$ distribution defined by the Cauchy Riemann structure induced over $Q$. We study the real regular curves of constant type in $Q$, transversal to $D$, finding a complete system of analytic invariants for two curves to be locally equivalent under transformations of $G$. (English) | 
| Keyword: | geometric structures on manifolds | 
| Keyword: | local submanifolds | 
| Keyword: | contact theory | 
| Keyword: | actions of groups | 
| MSC: | 32F40 | 
| MSC: | 53B25 | 
| MSC: | 53C15 | 
| idZBL: | Zbl 0870.53025 | 
| idMR: | MR1399840 | 
| . | 
| Date available: | 2008-06-06T21:30:09Z | 
| Last updated: | 2012-05-10 | 
| Stable URL: | http://hdl.handle.net/10338.dmlcz/107561 | 
| . | 
| Related article: | http://dml.cz/handle/10338.dmlcz/107663 | 
| . | 
| Reference: | [1] Bredon G.E.: Introduction to Compact Transformations groups.Academic Press, New York (1972).  MR 0413144 | 
| Reference: | [2] Cartan E.: Sur la géométrie pseudo-conforme des hypersurfaces de deux variables complexes, I. II.Ouvres II, 2, 1231-1304; ibid III,2, 1217-1238. | 
| Reference: | [3] Cartan E.: Théorie des groupes finis el la géométrie différentielle traitées par la Methode du repère mobile.Gauthier-Villars, Paris, (1937). | 
| Reference: | [4] Chern S. S., Moser J. K.: Real hypersurfaces in complex manifolds.Acta mathematica 133, (1975), 219-271.  Zbl 0302.32015, MR 0425155 | 
| Reference: | [5] Chern S. S., Cowen J. M.: Frenet frames along holomorphic curves.Topics in Differential Geometry, 1972-1973, pp. 191-203. Dekker, New York, 1974.  MR 0361170 | 
| Reference: | [6] Ehresmann C.: Les prolongements d’un space fibré diferéntiable.C.R. Acad. Sci. Paris, 240 (1955), 1755-1757.  MR 0071083 | 
| Reference: | [7] Green M. L.: The moving frame, Differential invariants and rigity theorems for curves in homogeneous spaces.Duke Math. Journal, Vol 45, No.4(1978), 735-779.  MR 0518104 | 
| Reference: | [8] Griffiths P.: On Cartan’s method of Lie groups and moving frames as applied to existence and uniqueness questions in differential geometry.Duke Math. J. 41(1974), 775-814.  MR 0410607 | 
| Reference: | [9] Hermann R.: Equivalence invariants for submanifolds of Homogeneous Spaces.Math. Annalen 158, 284-289 (1965).  Zbl 0125.39502, MR 0203653 | 
| Reference: | [10] Hermann R.: Existence in the large of parallelism homomorphisms.Trans. Am. Math. Soc. 108, 170-183 (1963).  MR 0151924 | 
| Reference: | [11] Jensen G. R.: Higher Order Contact of Submanifolds of Homogeneous Spaces.Lectures notes in Math. Vol. 610, Springer-Verlag, New York (1977).  Zbl 0356.53005, MR 0500648 | 
| Reference: | [12] Jensen G.R.: Deformation of submanifolds of homogeneous spaces.J. of Diff. Geometry, 16(1981), 213-246.  Zbl 0473.53044, MR 0638789 | 
| Reference: | [13] Kolář I.: Canonical forms on the prolongations of principle fibre bundles.Rev. Roum. Math. Pures et Appl., Bucarest, Tome XVI, No.7, (1971), 1091-1106.  MR 0301668 | 
| Reference: | [14] Rodrigues A. M.: Contact and equivalence of submanifolds of homogeneous spaces.Aspects of Math. and its Applications. Elsevier Science Publishers B.V. (1986).  Zbl 0601.53017, MR 2342861 | 
| Reference: | [15] Villarroel Y.: Equivalencia de curvas.Acta Científica Venezolana. Vol. 37, No. 6, p. 625-631, (1987).  MR 0897828 | 
| Reference: | [16] Villarroel Y.: Teoria de contacto y Referencial móvil.Public. Universidad Central de Venezuela. Dpto. de Matemática. 1991. | 
| . |