Previous |  Up |  Next

Article

Title: The nonlinear limit-point/limit-circle problem for higher order equations (English)
Author: Bartušek, Miroslav
Author: Došlá, Zuzana
Author: Graef, John R.
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 34
Issue: 1
Year: 1998
Pages: 13-22
Summary lang: English
.
Category: math
.
Summary: We describe the nonlinear limit-point/limit-circle problem for the $n$-th order differential equation \[ y^{(n)} + r(t)f(y,y^{\prime }, \dots , y^{(n-1)}) = 0. \] The results are then applied to higher order linear and nonlinear equations. A discussion of fourth order equations is included, and some directions for further research are indicated. (English)
Keyword: Higher order equations
Keyword: nonlinear limit-point
Keyword: nonlinear limit-circle
MSC: 34B15
MSC: 34C05
MSC: 34C10
MSC: 34C15
idZBL: Zbl 0914.34023
idMR: MR1629644
.
Date available: 2009-02-17T10:10:00Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107629
.
Reference: [1] M. Bartušek, Z. Došlá: On the limit-point/limit-circle problem for nonlinear third order differential equations.Math. Nachr. 187 (1997), 5–18. MR 1471135
Reference: [2] M. Bartušek Z. Došlá, and J. R. Graef: On $L^2$ and limit-point type solutions of fourth order differential equations.Appl. Anal. 60 (1996), 175–187. MR 1623388
Reference: [3] M. Bartušek Z. Došlá, and J. R. Graef: Limit-point type results for nonlinear fourth order differential equations.Nonlinear Anal. 28 (1997), 779–792. MR 1422183
Reference: [4] M. Bartušek Z. Došlá, and J. R. Graef: Nonlinear limit-point type solutions of $n$th order differential equations.J. Math. Anal. Appl. 209 (1997), 122–139. MR 1444516
Reference: [5] N. Dunford, J. T. Schwartz: Linear Operators; Part II: Spectral Theory.Wiley, New York, (1963). Zbl 0128.34803, MR 1009163
Reference: [6] M. S. P. Eastham: The limit-$2n$ case of symmetric differential operators of order $2n$.Proc. London Math. Soc. (3) 38 (1979), 272–294. Zbl 0398.34021, MR 0531163
Reference: [7] M. S. P. Eastham, C. G. M. Grudniewicz: Asymptotic theory and deficiency indices for fourth and higher order self-adjoint equations: a simplified approach.in: Ordinary and Partial Differential Equations (W. N. Everitt and B. D. Sleeman, eds.), Lecture Notes in Math. Vol 846 Springer Verlag, New York, 1981, pp. 88–99. Zbl 0514.34047, MR 0610637
Reference: [8] W. N. Everitt: On the limit-point classification of fourth-order differential equations.J. London Math. Soc. 44 (1969), 273–281. Zbl 0162.39201, MR 0235187
Reference: [9] M. V. Fedorjuk: Asymptotic method in the theory of one-dimensional singular differential operators.Trudy Mosk. Matem. Obsch. 15 (1966), 296–345. MR 0208060
Reference: [10] J. R. Graef: Limit circle criteria and related properties for nonlinear equations.J. Differential Equations 35 (1980), 319–338. Zbl 0441.34024, MR 0563385
Reference: [11] J. R. Graef: Limit circle type results for sublinear equations.Pacific J. Math. 104 (1983), 85–94. Zbl 0535.34024, MR 0683730
Reference: [12] J. R. Graef: Some asymptotic properties of solutions of $(a(t)x^{\prime })^{\prime } - q(t)f(x) = r(t)$.in: Differential Equations: Qualitative Theory (Szeged, 1984), Colloquia Mathematica Societatis János Bolyai, Vol. 47, North-Holland, Amsterdam, 1987, pp. 347–359. MR 0890550
Reference: [13] J. R. Graef, P. W. Spikes: On the nonlinear limit-point/limit-circle problem.Nonlinear Anal. 7 (1983), 851–871. Zbl 0535.34023, MR 0709039
Reference: [14] R. M. Kauffman T. T. Read, and A. Zettl: The Deficiency Index Problem for Powers of Ordinary Differential Expressions.Lecture Notes in Math. Vol. 621, Springer-Verlag, New York, 1977. MR 0481243
Reference: [15] R. M. Kauffman: On the limit-$n$ classification of ordinary differential operators with positive coefficients.Proc. London Math. Soc. 35 (1977), 496–526. Zbl 0382.47025, MR 0460780
Reference: [16] M. A. Naimark: Linear Differential Operators, Part II.George Harrap & Co., London, 1968. Zbl 0227.34020
Reference: [17] R. B. Paris, A. D. Wood: On the $L^2$ nature of solutions of $n$-th order symmetric differential equations and McLeod’s conjecture.Proc. Roy. Soc. Edinburgh 90A (1981), 209–236. Zbl 0483.34014, MR 0647603
Reference: [18] B. Schultze: On singular differential operators with positive coefficients.Proc. Roy. Soc. Edinburgh 10A (1992), 361–365. Zbl 0767.34058, MR 1159190
Reference: [19] P. W. Spikes: On the integrability of solutions of perturbed nonlinear differential equations.Proc. Roy. Soc. Edinburgh Sect. A 77 (1977), 309–318. MR 0514125
Reference: [20] P. W. Spikes: Criteria of limit circle type for nonlinear differential equations.SIAM J. Math. Anal. 10 (1979), 456–462. Zbl 0413.34033, MR 0529063
Reference: [21] H. Weyl: Über gewöhnliche Differentialgleichungen mit Singularitäten und die zugehörige Entwicklungen willkürlicher Funktionen.Math. Ann. 68 (1910), 220–269. MR 1511560
.

Files

Files Size Format View
ArchMathRetro_034-1998-1_3.pdf 241.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo