Previous |  Up |  Next


Title: Fixed point theory for closed multifunctions (English)
Author: O'Regan, Donal
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 34
Issue: 1
Year: 1998
Pages: 191-197
Summary lang: English
Category: math
Summary: In this paper some new fixed point theorems of Ky Fan, Leray-Schauder and Furi-Pera type are presented for closed multifunctions. (English)
Keyword: Fixed points
Keyword: multivalued maps
MSC: 47H04
MSC: 47H10
idZBL: Zbl 0914.47054
idMR: MR1629701
Date available: 2009-02-17T10:11:08Z
Last updated: 2012-05-10
Stable URL:
Reference: [1] Aliprantis C. D., Border K. C.: Infinite dimensional analysis.Springer Verlag, Berlin, 1994 Zbl 0839.46001, MR 1321140
Reference: [2] Ben-El-Mechaiekh H., Deguire P.: Approachability and fixed points for non-convex set valued maps.Jour. Math. Anal. Appl., 170 (1992), 477–500 Zbl 0762.54033, MR 1188567
Reference: [3] Ben-El-Mechaiekh H., Idzik A.: A Leray-Schauder type theorem for approximable maps.Proc. Amer. Math. Soc., 122 (1994), 105–109 Zbl 0814.47063, MR 1212281
Reference: [4] Deimling K.: Multivalued differential equations.Walter de Gruyter, Berlin, 1992 Zbl 0820.34009, MR 1189795
Reference: [5] Fitzpatrick P. M., Petryshyn W. V.: Fixed point theorems for multivalued noncompact acyclic mappings.Pacific Jour. Math., 54 (1974), 17–23 Zbl 0312.47047, MR 0405179
Reference: [6] Furi M., Pera P.: A continuation method on locally convex spaces and applications to ordinary differential equations on noncompact intervals.Ann. Polon. Math., 47 (1987), 331–346. Zbl 0656.47052, MR 0927581
Reference: [7] O’Regan D.: Some fixed point theorems for concentrative mappings between locally convex spaces.Nonlinear Analysis, 27 (1996), 1437–1446. MR 1408881
Reference: [8] O’Regan D.: Fixed points and random fixed points for weakly inward approximable maps.Proc. Amer. Math. Soc., (to appear) Zbl 0918.47049, MR 1469430
Reference: [9] O’Regan D.: Multivalued integral equations in finite and infinite dimensions.Comm. in Applied Analysis, (to appear) Zbl 0903.45005, MR 1636992
Reference: [10] O’Regan D.: Nonlinear alternatives for multivalued maps with applications to operator inclusions in abstract spaces.Proc. Amer. Math. Soc., (to appear) Zbl 0936.47035, MR 1610765
Reference: [11] O’Regan D.: A general coincidence theory for set valued maps.(submitted) Zbl 0938.47036
Reference: [12] Zeidler E.: Nonlinear functional analysis and its applications, Vol 1.Springer Verlag, New York, 1986 MR 0816732


Files Size Format View
ArchMathRetro_034-1998-1_18.pdf 202.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo