| Title: | Higher order contact of real curves in a real hyperquadric. II (English) | 
| Author: | Villarroel, Yuli | 
| Language: | English | 
| Journal: | Archivum Mathematicum | 
| ISSN: | 0044-8753 (print) | 
| ISSN: | 1212-5059 (online) | 
| Volume: | 34 | 
| Issue: | 3 | 
| Year: | 1998 | 
| Pages: | 361-377 | 
| Summary lang: | English | 
| . | 
| Category: | math | 
| . | 
| Summary: | Let $\Phi $ be an Hermitian quadratic form, of maximal rank and index $(n,1)$, defined over a complex $(n+1)$ vector space $V$. Consider the real
hyperquadric defined in the complex projective space $P^nV$ by \[ Q=\{[\varsigma ]\in P^nV,\;\Phi (\varsigma )=0\}. \] Let $G$ be the subgroup of the special linear group which leaves $ Q $ invariant and $D$ the $(2n)-$ distribution defined by the Cauchy Riemann structure induced over $Q$. We study the real regular curves of constant type in $Q$, tangent to $D$, finding a complete system of analytic invariants for two curves to be locally equivalent under transformations of $G$. (English) | 
| Keyword: | geometric structures on manifolds | 
| Keyword: | local submanifolds | 
| Keyword: | contacttheory | 
| Keyword: | actions of groups | 
| MSC: | 32F40 | 
| MSC: | 53A55 | 
| MSC: | 53B25 | 
| MSC: | 53B35 | 
| idZBL: | Zbl 0967.53015 | 
| idMR: | MR1662048 | 
| . | 
| Date available: | 2009-02-17T10:14:30Z | 
| Last updated: | 2012-05-10 | 
| Stable URL: | http://hdl.handle.net/10338.dmlcz/107663 | 
| . | 
| Related article: | http://dml.cz/handle/10338.dmlcz/107561 | 
| . | 
| Reference: | [1] Bredon G. E.: Introduction to Compact Transformations groups.Academic. Press, New York (1972).  MR 0413144 | 
| Reference: | [2] Cartan E.: Sur la géométrie pseudo-conforme des hypersurfaces de deux variables complexes, I. II.Ouvres II, 2, 1231-1304; ibid III,2, 1217-1238. | 
| Reference: | [3] Cartan E.: Théorie des groupes finis el la géométrie différentielle traitées par la Methode du repère mobile.Gauthier-Villars, Paris, (1937). | 
| Reference: | [4] Chern S. S., Moser J. K.: Real hypersurfaces in complex manifolds.Acta mathematica 133(1975), 219-271.  Zbl 0302.32015, MR 0425155 | 
| Reference: | [5] Chern S. S., Cowen J. M.: Frenet frames along holomorphic curves.Topics in Differential Geometry, 1972-1973, 191-203. Dekker, New York, 1974.  MR 0361170 | 
| Reference: | [6] Ehresmann C.: Les prolongements d’un space fibré diferéntiable.C.R. Acad. Sci. Paris, 240(1955), 1755-1757.  MR 0071083 | 
| Reference: | [7] Green M. L.: The moving frame, Differential invariants and rigity theorems for curves in homogeneous spaces.Duke Math. Journal, Vol 45, No.4 (1978), 735-779.  MR 0518104 | 
| Reference: | [8] Griffiths P.: On Cartan’s method of Lie groups and moving frames as applied to existence and uniqueness questions in differential geometry.Duke Math. J. 41(1974), 775-814.  MR 0410607 | 
| Reference: | [9] Hermann R.: Equivalence invariants for submanifolds of Homogeneous Spaces.Math. Annalen 158(1965), 284-289.  Zbl 0125.39502, MR 0203653 | 
| Reference: | [10] Hermann R.: Existence in the large of parallelism homomorphisms.Trans. Am. Math. Soc. 108, 170-183 (1963).  MR 0151924 | 
| Reference: | [11] Jensen G.  R.: Higher Order Contact of Submanifolds of Homogeneous Spaces.Lectures notes in Math. Vol. 610, Springer-Verlag, New York (1977).  Zbl 0356.53005, MR 0500648 | 
| Reference: | [12] Jensen G. R.: Deformation of submanifolds of homogeneous spaces.J. of Diff. Geometry, 16(1981), 213-246.  Zbl 0473.53044, MR 0638789 | 
| Reference: | [13] Kolář I.: Canonical forms on the prolongations of principle fibre bundles.Rev. Roum. Math. Pures et Appl., Bucarest, Tome XVI, No.7 (1971), 1091-1106.  MR 0301668 | 
| Reference: | [14] Rodrigues A. M.: Contact and equivalence of submanifolds of homogeneous spaces, aspects of Math. and its Applications.Elsevier Science Publishers B.V. (1986).  MR 2342861 | 
| Reference: | [15] Villarroel Y.: Differential Geometry and Applications.Proc. Conf. Brno (1996), 207-214.  MR 1406339 | 
| Reference: | [16] Villarroel Y.: Higher order contact of real curves in a real hyperquadric.Archivum mathematicum, Tomus 32(1996), 57-73.   Zbl 0870.53025, MR 1399840 | 
| . |