Previous |  Up |  Next


Hamiltonian vector fields; Poisson bracket; pseudogroup action
Subalgebras of germs of vector fields leaving $0$ fixed in $R^{2n}$, of finite codimension in symplectic Lie algebra contain the ideal of germs infinitely flat at $0$. We give an application.
[1] Bénalili M.: Fibrés naturels définis sur la catégorie des $\Gamma -$variétés. Circolo Mat. di Palermo, 13, (1994), 309-328. MR 1344871
[2] Epstein D. B. A., Thurston W. P.: Transformation groups and natural bundles. Proc. London Math. Soc. 38 (1979), 219-237. MR 0531161 | Zbl 0409.58001
[3] Omori H.: Infinite dimensional Lie transformation groups. Lect. Notes in Math. (427), Springer Verlag. MR 0431262 | Zbl 0328.58005
[4] Libermann P., Marle C. M.: Symplectic Geometry and Analytical Mechanics. D. Reidel Publishing Company Holland (1987). MR 0882548 | Zbl 0643.53002
[5] Palais R. S., Terng C. L.: Natural bundles have finite order. Topology 16 (1978), 271-277. MR 0467787
Partner of
EuDML logo