[1] Atkinson F. V.: 
On second-order non-linear oscillations. Pacific J. Math. 5 (1955), 643–647.  
MR 0072316 | 
Zbl 0065.32001[2] Cecchi M., Furi M., Marini M.: 
On continuity and compactness of some nonlinear operators associated with differential equations in noncompact intervals. Nonlinear Anal. TMA 9 (1985), 171–180.  
MR 0777986 | 
Zbl 0563.34018[3] Cecchi M., Marini M., Villari G.: 
On some classes of continuable solutions of a nonlinear differential equation. J. Diff. Eq. 118 (1995), 403–419.  
MR 1330834 | 
Zbl 0827.34020[4] Cecchi M., Marini M., Villari G.: 
Topological and variational approaches for nonlinear oscillation: an extension of a Bhatia result. In Proc. First World Congress Nonlinear Analysis, Walter de Gruyter, Berlin, 1996, 1505–1514.  
MR 1389184 | 
Zbl 0846.34027[5] Cecchi M., Marini M., Villari G.: Oscillation criteria for second order differential equations. (to appear on NODEA), 1999. 
[6] Del Pino M., Elgueta M., Manasevich R.: 
Generalizing Hartmann’s oscillation result for $(\vert x^{\prime }\vert ^{p-2} x^{\prime })^{\prime } + c(t) \vert x\vert ^{p-2} x =0, \, p>1$ . Houston J. Math. 17 (1991), 63–70.  
MR 1107187[7] Elbert Á.: 
A half-linear second order differential equation. In: Qualitative Theory of Differential Equations, volume 30 of Colloquia Math. Soc. Janos Bolyai, Szeged, 1979, 153–180.  
MR 0680591[8] Elbert Á.: 
Oscillation and nonoscillation theorems for some nonlinear ordinary differential equations. In: Ordinary and partial differential equations, volume 964 of Lect. Notes Math., Proc. 7th Conf., Dundee, Scotl., 1982, 187–212.  
MR 0693113 | 
Zbl 0528.34034[9] Elbert Á., Kusano T.: 
Oscillation and non-oscillation theorems for a class of second order quasilinear differential equations. Acta Math. Hung. 56 (1990), 325–336.  
MR 1111319[11] Heidel J. W.: 
A nonoscillation theorem for a nonlinear second order differential equation. Proc. Amer. Math. Soc. 22 (1969), 485–488.  
MR 0248396 | 
Zbl 0169.42203[12] Kiguradze I. T., Chanturia T. A.: Asymptotic properties of solutions of nonautonomous ordinary differential equations. Kluwer Academic Publishers, Dordrecht-Boston-London, 1992. 
[13] Kusano T., Naito Y.: 
Oscillation and nonoscillation criteria for second order quasilinear differential equations. Acta Math. Hungar. 76 (1997), 81–99.  
MR 1459772 | 
Zbl 0906.34024[14] Kusano T., Naito Y., Ogata Q.: 
Strong oscillation and nonoscillation of quasilinear differential equations of second order. J. Diff. Eq. and Dyn. Syst. 2 (1994), 1–10.  
MR 1386034 | 
Zbl 0869.34031[15] Kusano T., Yoshida N.: 
Nonoscillation theorems for a class of quasilinear differential equations of second order. J. Math. Anal. Appl. 189 (1995), 115–127.  
MR 1312033 | 
Zbl 0823.34039[16] Lomtatidze A.: 
Oscillation and nonoscillation of Emden-Fowler type equation of second order. Arch. Math. Brno 32 (1996), 181–193.  
MR 1421855[17] Mirzov J. D.: 
On the oscillation of a system of nonlinear differential equations. Differentsial’nye Uravneniya 9 (1973), 581–583, (in Russian).  
MR 0315209[18] Mirzov J. D.: 
On the question of oscillation of solutions of a system of nonlinear differential equations. Mat. Zametki 16 (1974), 571–576, (in Russian).  
MR 0374562[19] Mirzov J. D.: 
On some analogs of Sturm’s and Kneser’s theorems for nonlinear systems. J. Math. Anal. Appl. 53 (1976), 418–425.  
MR 0402184 | 
Zbl 0327.34027[20] Mirzov J. D.: 
On the oscillation of solutions of a system of differential equations. Math. Zametki 23 (1978), 401–404, (in Russian).  
MR 0492540[21] Mirzov J. D.: Asymptotic properties of the solutions of the system of nonlinear nonautonomous differential equations. Adygeja, Maikop, 1993. 
[22] Nehari Z.: 
Oscillation criteria for second-order linear differential equations. Trans. Amer. Math. Soc. 85 (1957), 428–445.  
MR 0087816 | 
Zbl 0078.07602[23] Njoku F. I.: 
A note on the existence of infinitely many radially symmetric solutions of a quasilinear elliptic problem. Dyn. Cont. Discrete Impulsive Syst. 4 (1998), 227–239.  
MR 1621822 | 
Zbl 0901.35033[24] Njoku F. I., Omari P., and Zanolin F.: 
Multiplicity of positive radial solutions of a quasilinear elliptic problem in a ball. (to appear), 1998.  
MR 1785685[26] Wong J. S. W.: 
On second order nonlinear oscillation. Funkcial. Ekvac. 11 (1968), 207–234.  
MR 0245915 | 
Zbl 0157.14802