[1] Agoh, T., Dilcher, K., Skula, L.: 
Wilson quotients for composite moduli. Comp. Math. 67 (1998). No. 222, 843–861. 
MR 1464140 
[2] Bayat, M.: 
A generalization of Wolstenholme’s theorem. Amer. Math. Monthly 109 (1997), 557–560. 
MR 1453658 | 
Zbl 0916.11002 
[3] Dilcher, K., Skula, L., Slavutskii, I. Sh.: 
Bernoulli numbers. Bibliography (1713–1990). Queen’s papers in Pure and Applied Mathematics, 1991, No. 87, 175 pp.; Appendix, Preprint (1994), 30 pp. 
MR 1119305 
[4] Hardy, G. H., Wright, E. M.: 
An introduction to theory of numbers. 5th ed., Oxford Sci. Publ., 1979. 
MR 0067125 
[5] Lehmer, E.: 
On congruences involving Bernoulli numbers and quotients of Fermat and Wilson. Ann. Math. 39 (2) (1938), 350–360. 
MR 1503412 
[6] Leudesdorf, C.: Some results in the elementary theory of numbers. Proc. London Math. Soc. 20 (1889), 199–212.
[7] Rama Rao, M.: An extention of Leudesdorf theorem. J. London Math. Soc. 12 (1937), 247–250.
[8] Slavutskii, I.: 
Staudt and arithmetic properties on Bernoulli numbers. Hist. Scient. 5 (1995), 70–74. 
MR 1349737 
[10] Washington, L. C.: 
Introduction to cyclotomic fields. 2nd ed., Springer-Verlag, New York, 1997. 
MR 1421575 | 
Zbl 0966.11047 
[11] Wolstenholme, J.: On certain properties of prime numbers. Quart. J. Math. 5 (1862), 35–39.