[2] Bartol W.: 
Weak subalgebra lattices of monounary partial algebras. Comment. Math. Univ. Carolinae 31 (1990), 411–414.  
MR 1078474 | 
Zbl 0711.08007[3] Bartol W., Rosselló F., Rudak L.: Lectures on Algebras, Equations and Partiality. Technical report B–006, Univ. Illes Balears, Dept. Ciencies Mat. Inf, ed. Rosselló F., 1992. 
[5] Birkhoff G., Frink O.: 
Representation of lattices by sets. Trans. AMS 64 (1948), 299–316.  
MR 0027263[6] Burmeister P.: 
A Model Theoretic Oriented Approach to Partial Algebras. Math. Research Band 32, Akademie Verlag, Berlin, 1986.  
MR 0854861 | 
Zbl 0598.08004[7] Evans T., Ganter B.: 
Varieties with modular subalgebra lattices. Bull. Austr. Math. Soc. 28 (1983), 247–254.  
MR 0729011 | 
Zbl 0545.08010[8] Grätzer G.: 
Universal Algebra. second edition, Springer-Verlag, New York 1979.  
MR 0538623[9] Grätzer G.: 
General Lattice Theory. Akademie-Verlag, Berlin 1978.  
MR 0504338[10] Grzeszczuk P., Puczyłowski E. R.: 
On Goldie and dual Goldie dimensions. J. Pure Appl. Algebra 31(1984) 47–54.  
MR 0738204 | 
Zbl 0528.16010[11] Grzeszczuk P., Puczyłowski E. R.: 
On infinite Goldie dimension of modular lattices and modules. J. Pure Appl. Algebra 35(1985) 151–155.  
MR 0775467 | 
Zbl 0562.16014[12] Jónsson B.: 
Topics in Universal Algebra. Lecture Notes in Mathemathics 250, Springer-Verlag, 1972.  
MR 0345895[13] Kiss E. W., Valeriote M. A.: 
Abelian algebras and the Hamiltonian property. J. Pure Appl. Algebra 87 (1993), 37–49.  
MR 1222175 | 
Zbl 0779.08004[14] Lukács E., Pálfy P. P.: 
Modularity of the subgroup lattice of a direct square. Arch. Math. 46 (1986), 18–19.  
MR 0829806 | 
Zbl 0998.20500[15] Pálfy P. P.: 
Modular subalgebra lattices. Alg. Univ. 27 (1990), 220–229.  
MR 1037863[16] Pióro K.: 
On some non–obvious connections between graphs and unary partial algebras. - to appear in Czechoslovak Math. J.  
MR 1761388 | 
Zbl 1046.08002[17] Pióro K.: 
On the subalgebra lattice of unary algebras. Acta Math. Hungar. 84(1–2) (1999), 27–45.  
MR 1696550 | 
Zbl 0988.08004[18] Pióro K.: 
On a strong property of the weak subalgebra lattice. Alg Univ. 40(4) (1998), 477–495.  
MR 1681837[19] Pióro K.: On some properties of the weak subalgebra lattice of a partial algebra of a fixed type. - in preparation. 
[20] Sachs D.: 
The lattice of subalgebras of a Boolean algebra. Canad. J. Math. 14 (1962), 451–460.  
MR 0137666[21] Shapiro J.: 
Finite equational bases for subalgebra distributive varieties. Alg. Univ. 24 (1987), 36–40.  
MR 0921528[22] Shapiro J.: 
Finite algebras with abelian properties. Alg. Univ. 25 (1988), 334–364.   
MR 0969156