Previous |  Up |  Next


biased map; compatible map; fixed point; normed space
Some common fixed point theorems in normed spaces are proved using the concept of biased mappings- a generalization of compatible mappings.
[1] Kaneko, H. and Sessa, S.: Fixed point theorems for compatible multivalued and single valued mappings. Internat. J. Math. and Math. Sci. 12 (1989), 257–269. MR 0994907
[2] Jungck, G.: Compatible mappings and common fixed points. Internat. J. Math. and Math. Sci. 9 (1989), 771–779. MR 0870534 | Zbl 0802.47053
[3] Jungck, G.: Common fixed points of commuting and compatible maps on compacta. Proc. Amer. Math. Soc. 103 (1988), 977–983. MR 0947693
[4] Jungck, G., Murthy, P. P. and Cho, Y. J.: Compatible mappings of type $(A)$ and common fixed points. Math. Japonica 38(2) (1993), 381–390. MR 1213401
[5] Jungck, G. and Pathak, H. K.: Fixed points via “biased maps". Proc. Amer. Math. Soc. 123 (1995), 2049–2060. MR 1283555
[6] Pathak, H. K. and Fisher, B.: A common fixed point theorem for compatible mappings on normed vector space. Arch. Math.(Brno) 33 (1997), 245–251. MR 1478775
[7] Pathak, H. K., Kang, S. M. and Cho, Y. J.: Gregus type common fixed point theorems for compatible mappings of type $(T)$ and variational inequalities. Publ. Math. Debrecen 46 (1995), 285–299. MR 1336369
[8] Pathak, H. K. and Khan, M. S.: Compatible mappings of type $(B)$ and common fixed point theorems of Gregus type. Czechoslovak Math. J. 45(120) (1995), 685–698. MR 1354926
Partner of
EuDML logo