Previous |  Up |  Next


bundle functors; natural transformations; natural affinors
For natural numbers $r$ and $n\ge 2$ a complete classification of natural affinors on the natural bundle $(J^rT^*)^*$ dual to $r$-jet prolongation $J^rT^*$ of the cotangent bundle over $n$-manifolds is given.
[1] Doupovec, M.: Natural transformations between $TTT^*M$ and $TT^*TM$. Czechoslovak Math. J. 43 (118) 1993, 599–613. MR 1258423 | Zbl 0806.53024
[2] Doupovec, M., Kolář, I.: Natural affinors on time-dependent Weil bundles. Arch. Math. (Brno) 27 (1991), 205–209. MR 1189217
[3] Gancarzewicz, J., Kolář, I.: Natural affinors on the extended $r$-th order tangent bundles. Suppl. Rendiconti Circolo Mat. Palermo, 30 (1993), 95–100. MR 1246623
[4] Kolář I., Michor P. W., Slovák J.: Natural operations in differential geometry. Springer-Verlag, Berlin 1993. MR 1202431
[5] Kolář, I., Modugno, M.: Torsions of connections on some natural bundles. Diff. Geom. and Appl. 2(1992), 1–16. MR 1244453
[6] Kurek, J.: Natural affinors on higher order cotangent bundles. Arch. Math. (Brno) 28 (1992), 175–180. MR 1222284
[7] Mikulski, W. M.: Natural affinors on $r$-jet prolongation of the tangent bundle. Arch. Math. (Brno) 34(2)(1998), 321–328. MR 1645340 | Zbl 0915.58006
[8] Mikulski, W. M.: The natural affinors on $\otimes ^k T^{(r)}$. Note di Matematica, to appear.
[9] Zajtz, A.: On the order of natural operators and liftings. Ann. Polon. Math. 49(1988), 169–178. MR 0983220
Partner of
EuDML logo