Previous |  Up |  Next


separated jet; canonical exchange; natural transformation
Given a map of a product of two manifolds into a third one, one can define its jets of separated orders $r$ and $s$. We study the functor $J$ of separated $(r;s)$-jets. We determine all natural transformations of $J$ into itself and we characterize the canonical exchange $J\rightarrow J^{s;r}$ from the naturality point of view.
[1] Kawaguchi M.: Jets infinitésimaux d’ordre séparé supérieur. Proc. Japan Acad. 37 (1961), 18–22. MR 0160167 | Zbl 0840.58004
[2] Kolář I.: On some operations with connections. Math. Nachr. 69 (1975), 297–306. MR 0391157
[3] Kolář I., Michor P.W., Slovák J.: Natural Operations in Differential Geometry. Springer-Verlag, 1993. MR 1202431
[4] Kolář I., Vosmanská G.: Natural transformations of higher order tangent bundles and jet spaces. Čas. pěst. mat. 114 (1989), 181–186. MR 1063764
[5] Libermann P.: Introduction to the theory of semi-holonomic jets. Archivum Math. (Brno) 33 (1997), 173–189. MR 1478771 | Zbl 0915.58004
Partner of
EuDML logo