Previous |  Up |  Next

Article

Title: Natural vector fields and 2-vector fields on the tangent bundle of a pseudo-Riemannian manifold (English)
Author: Janyška, Josef
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 37
Issue: 2
Year: 2001
Pages: 143-160
Summary lang: English
.
Category: math
.
Summary: Let $M$ be a differentiable manifold with a pseudo-Riemannian metric $g$ and a linear symmetric connection $K$. We classify all natural (in the sense of [KMS]) 0-order vector fields and 2-vector fields on $TM$ generated by $g$ and $K$. We get that all natural vector fields are of the form \[ E(u)=\alpha (h(u))\, u^H + \beta (h(u))\, u^V\,, \] where $u^V$ is the vertical lift of $u\in T_xM$, $u^H$ is the horizontal lift of $u$ with respect to $K$, $h(u)= 1/2 g(u,u)$ and $\alpha ,\beta $ are smooth real functions defined on $R$. All natural 2-vector fields are of the form \[ \Lambda (u) = \gamma _1(h(u))\, \Lambda (g,K) + \gamma _2(h(u))\,u^H\wedge u^V\,, \] where $\gamma _1$, $\gamma _2$ are smooth real functions defined on $R$ and $\Lambda (g,K)$ is the canonical 2-vector field induced by $g$ and $K$. Conditions for $(E,\Lambda )$ to define a Jacobi or a Poisson structure on $TM$ are disscused. (English)
Keyword: Poisson structure
Keyword: pseudo–Riemannian manifold
Keyword: natural operator
MSC: 53C50
MSC: 53D17
MSC: 58A20
MSC: 58A32
idZBL: Zbl 1090.58007
idMR: MR1838411
.
Date available: 2008-06-06T22:28:41Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107794
.
Reference: [1] Janyška J.: Remarks on symplectic and contact 2–forms in relativistic theories.Bollettino U.M.I. (7) 9–B (1995), 587–616. Zbl 0857.53027, MR 1351076
Reference: [2] Janyška J.: Natural symplectic structures on the tangent bundle of a space-time.Proceedings of the Winter School Geometry and Topology (Srní, 1995), Supplemento ai Rendiconti del Circolo Matematico di Palermo, Serie II 43 (1996), pp. 153–162. MR 1463517
Reference: [3] Janyška J.: Natural Poisson and Jacobi structures on the tangent bundle of a pseudo-Riemannian manifold.preprint 2000. Zbl 1013.53053, MR 1871030
Reference: [4] Kolář I., Michor P. W., Slovák J.: Natural Operations in Differential Geometry.Springer–Verlag 1993. MR 1202431
Reference: [5] Kowalski O., Sekizawa M.: Natural transformations of Riemannian metrics on manifolds to metrics on tangent bundles - a classification.Bull. Tokyo Gakugei Univ., Sect.IV 40 (1988), pp. 1–29. Zbl 0656.53021, MR 0974641
Reference: [6] Krupka D., Janyška J.: Lectures on Differential Invariants.Folia Fac. Sci. Nat. Univ. Purkynianae Brunensis, Brno 1990. MR 1108622
Reference: [7] Libermann P., Marle, Ch. M.: Symplectic Geometry and Analytical Mechanics.Reidel Publ., Dordrecht 1987. Zbl 0643.53002, MR 0882548
Reference: [8] Lichnerowicz A.: Les variétés de Jacobi et leurs algèbres de Lie associées.J. Math. Pures et Appl., 57 (1978), pp. 453–488. Zbl 0407.53025, MR 0524629
Reference: [9] Nijenhuis A.: Natural bundles and their general properties.Diff. Geom., in honour of K. Yano, Kinokuniya, Tokyo 1972, pp. 317–334. Zbl 0246.53018, MR 0380862
Reference: [10] Sekizawa M.: Natural transformations of vector fields on manifolds to vector fields on tangent bundles.Tsukuba J. Math. 12 (1988), pp. 115–128. Zbl 0657.53009, MR 0949905
Reference: [11] Terng C. L.: Natural vector bundles and natural differential operators.Am. J. Math. 100 (1978), pp. 775–828. Zbl 0422.58001, MR 0509074
Reference: [12] Vaisman I.: Lectures on the Geometry of Poisson Manifolds.Birkhäuser, Verlag 1994. Zbl 0810.53019, MR 1269545
.

Files

Files Size Format View
ArchMathRetro_037-2001-2_6.pdf 393.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo