| Title: | Random fixed points of increasing compact random maps (English) | 
| Author: | Beg, Ismat | 
| Language: | English | 
| Journal: | Archivum Mathematicum | 
| ISSN: | 0044-8753 (print) | 
| ISSN: | 1212-5059 (online) | 
| Volume: | 37 | 
| Issue: | 4 | 
| Year: | 2001 | 
| Pages: | 329-332 | 
| Summary lang: | English | 
| . | 
| Category: | math | 
| . | 
| Summary: | Let $(\Omega ,\Sigma )$ be a measurable space, $(E,P)$ be an ordered separable Banach space and let $[a,b]$ be a nonempty order interval in $E$. It is shown that if $f:\Omega \times [a,b]\rightarrow E$ is an increasing compact random map such that $a\le f(\omega ,a)$ and $f(\omega ,b)\le b$ for each $\omega \in \Omega $ then $f$ possesses a minimal random fixed point $\alpha $ and a maximal random fixed point $\beta $. (English) | 
| Keyword: | random fixed point | 
| Keyword: | random map | 
| Keyword: | measurable space | 
| Keyword: | ordered Banach space | 
| MSC: | 47H10 | 
| MSC: | 47H40 | 
| MSC: | 60H25 | 
| idZBL: | Zbl 1068.47079 | 
| idMR: | MR1879455 | 
| . | 
| Date available: | 2008-06-06T22:29:29Z | 
| Last updated: | 2012-05-10 | 
| Stable URL: | http://hdl.handle.net/10338.dmlcz/107810 | 
| . | 
| Reference: | [1] Beg I.: Random fixed points of random operators satisfying semicontractivity conditions.Math. Japon. 46 (1) (1997), 151–155.  Zbl 0896.47053, MR 1466128 | 
| Reference: | [2] Beg I., Shahzad N.: Some random approximation theorem with applications.Nonlinear Anal. 35 (1999), 609–616.  MR 1656922 | 
| Reference: | [3] Bharucha-Reid A. T.: Random Integral Equations.Academic Press, New York , 1972.  Zbl 0327.60040, MR 0443086 | 
| Reference: | [4] Bharucha-Reid A. T.: Fixed point theorems in probabilistic analysis.Bull. Amer. Math. Soc. 82 (1976), 641–657.  Zbl 0339.60061, MR 0413273 | 
| Reference: | [5] Hans O.: Reduzierende zulliällige transformaten.Czechoslovak Math. J. 7 (1957), 154–158.  MR 0090161 | 
| Reference: | [6] Hans O.: Random operator equations.In: Proc. 4th Berkeley Symposium on Mathematical Statistics and Probability Vol. II, Part I, 185–202, University of California Press, Berkeley 1961.  Zbl 0132.12402, MR 0146665 | 
| Reference: | [7] Itoh S.: Random fixed point theorems with an application to random differential equations in Banach spaces.J. Math. Anal. Appl. 67 (1979), 261–273.  Zbl 0407.60069, MR 0528687 | 
| Reference: | [8] Jameson G.: Ordered Linear Spaces.Lecture Notes, Vol. 141, Springer Verlag, New York, 1970.  Zbl 0196.13401, MR 0438077 | 
| Reference: | [9] Lishan L.: Some random approximations and random fixed point theorems for 1-set-contractive random operators.Proc. Amer. Math. Soc. 125 (1997), 515–521.  MR 1350953 | 
| Reference: | [10] Papageorgiou N. S.: Random fixed point theorems for measurable multifunctions in Banach spaces.Proc. Amer. Math. Soc. 97 (1986), 507–514.  Zbl 0606.60058, MR 0840638 | 
| Reference: | [11] Schaefer H. H.: Topological Vector Spaces.Springer Verlag, New York, 1971.  Zbl 0217.16002, MR 0342978 | 
| Reference: | [12] Sehgal V. M., Waters C.: Some random fixed point theorems.Contemporary Math. 21 (1983), 215–218.  Zbl 0541.47041, MR 0729519 | 
| Reference: | [13] Špaček A.: Zufällige gleichungen.Czechoslovak Math. J. 5 (1955), 462–466.  Zbl 0068.32701, MR 0079854 | 
| Reference: | [14] Tan K. K., Yuan X. Z.: Random fixed point theorems and approximations.Stochastic Anal. Appl. 15 (1) (1997), 103–123.  MR 1429860 | 
| Reference: | [15] Zaanen A. C. : Introduction to Operator Theory in Riesz Spaces.Springer Verlag, Berlin, 1997.   Zbl 0878.47022, MR 1631533 | 
| . |