[1] Agranovich M. S.: 
Spectral properties of elliptic pseudo-differential operators on a closed curve. Funct. Anal. Appl. 13 (1979), 279–281.  
MR 0554412[2] Arnold D. N., Wendland W. L.: 
On the asymptotic convergence of collocation methods. Math. of Comp. 41, No 164(1983), 349–381.  
MR 0717691 | 
Zbl 0541.65075[3] Arnold D. N., Wendland W. L.: 
The convergence of spline collocation for strongly elliptic equations on curves. Number. Math. 46 (1985), 317–341.  
MR 0808553 | 
Zbl 0592.65077[4] Elshner J.: 
On spline collocation for singular integral equations on an interval. Semin. Anal. Oper. Equat. and Numer. Anal. 1985/86. (1986), 31–54.  
MR 0890525[5] Elshner J.: 
On spline approximation for a class of integral equations III. Collocation methods with piecewise linear splines. Semin. Anal. Oper. Equat. and Numer. Anal. 1986/87. (1987), 25–40.  
MR 0941601[6] Elshner J.: On spline approximation for singular integral equations on an interval. Preprint Akad. Wiss. DDR, Karl Weierstrass Inst. Nath. 4, 1987. 
[7] Elshner J.: 
On spline approximation for singular integral equations on an interval. Math. Nachr. 139 (1988), 309–319.  
MR 0978129[9] Gohberg I., Fel’dman I.: 
Convolution Equations and Projection Methods for their Solution. AMS Translations of Mathematical Monographs 41, Amer. Math. Soc., Providence, RI, 1974.  
MR 0355675 | 
Zbl 0278.45008[10] Gohberg I., Krupnik N.: 
Einführung in die Theorie der eindimensionalen singulären Integraloperatoren. Birkhäuser, Basel, Boston, Stuttgart, 1979.  
MR 0545507 | 
Zbl 0413.47040[11] Golberg M. A.: 
The convergence of several algorithms for solving integral equations with finite-part integrals. J. Integral Equations 5 (1983), 329–340.  
MR 0714459 | 
Zbl 0529.65079[12] Ivanov V. V.: The approximate solutions of the singular integral equations. PhD’s Thesis, Moscow 1956 (in Russian). 
[13] McLean W., Prössdorf S. B., Wendland W. L.: 
Pointwise error estimate for the trigonometric collocation method applied to singular integral equations and periodic pseudodifferential equations. J. Integral Equations Appl. 2, No 1(1989), 125–146.  
MR 1033207[14] McLean W., Wendland W. L.: 
Trigonometric approximation of solutions of periodic pseudodifferential equations. Operation Theory: Advances and Applications 41 (1989), 359–383.  
MR 1038346 | 
Zbl 0693.65093[17] Noether F.: 
Über eine Klasse singulärer Integralgleichungen. Math. Ann. 82 (1921), 42-63.  
MR 1511970[18] Prössdorf S. B.: On spline collocation of singular integral equations on non uniform mesh. Semin. Anal. Oper. Equat. and Numer. Anal. 1986/87 (1987), 123–137. 
[19] Prössdorf S. B.: 
Recent results in numerical analysis for singular integral equations. Proc. 9th Conf. Probl. and Meth. Math. Phys. (TPM) Karl-Marx-Stadt, June 27 - July 1 (1988), 224–234.  
MR 1087326[20] Prössdorf S. B., Schmidt G.: 
A finite element collocation method for singular integral equations. Math. Nachr. 100 (1981), 33–60.  
MR 0632620 | 
Zbl 0543.65089[21] Saranen J., Wendland W. L.: 
The Fourier series representation of pseudo-differential operators on closed curves. Complex Variables 8 (1987), 55–64.  
MR 0891751 | 
Zbl 0577.47046[22] Schmidt G.: 
On spline collocation for singular integral equations. Math. Nachr. 111 (1983), 177–196.  
MR 0725777 | 
Zbl 0543.65088[23] Stein E. M.: 
Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton, 1970.  
MR 0290095 | 
Zbl 0207.13501[24] Wendland W. L.: 
Strongly elliptic boundary integral equations. in “The State of the Art in Numerical Analysis” (A. Iserles and M.J.D. Powell, eds.) Claredon Press, Oxford, 1987.   
MR 0921677 | 
Zbl 0615.65119