[1] Allegretto W., Huang Y. X.: 
A Picone’s identity for the $p$-Laplacian and applications. Nonlin. Anal. 32 (1998), 819–830.  
MR 1618334 | 
Zbl 0930.35053[2] Cecchi M., Došlá Z., Marini M.: 
Principal solutions and minimal set for quasilinear differential equations. to appear in Dynam. Syst. Appl.  
MR 2140874[3] Došlý O., Elbert Á.: 
Integral characterization of the principal solution of half-linear differential equations. Studia Sci. Math. Hungar. 36 (2000), No. 3-4, 455–469.  
MR 1798750[4] Došlý O., Lomtatidze A.: 
Oscillation and nonoscillation criteria for half-linear second order differential equations. submitted.  
Zbl 1123.34028[5] Elbert Á.: A half-linear second order differential equation. Colloq. Math. Soc. János Bolyai 30 (1979), 158–180. 
[6] Elbert Á.: 
Asymptotic behaviour of autonomous half-linear differential systems on the plane. Studia Sci. Math. Hungar. 19 (1984), 447–464.  
MR 0874513 | 
Zbl 0629.34066[7] Elbert Á.: 
The Wronskian and the half-linear differential equations. Studia Sci. Math. Hungar. 15 (1980), 101–105.  
MR 0681431 | 
Zbl 0522.34034[8] Elbert Á., Kusano T.: 
Principal solutions of nonoscillatory half-linear differential equations. Advances in Math. Sci. Appl. 18 (1998), 745–759.  
MR 1657164[9] Elbert Á., Schneider A.: 
Perturbation of the half-linear Euler differential equations. Result. Math. 37 (2000), 56–83.  
MR 1742294[11] Jaroš J., Kusano T.: 
A Picone type identity for half-linear differential equations. Acta Math. Univ. Comenianea 68 (1999), 137–151.  
MR 1711081[12] Leighton W., Morse M.: 
Singular quadratic functionals. Trans. Amer. Math. Soc. 40 (1936) 252–286.  
MR 1501873 | 
Zbl 0015.02701[13] Lorch L., Newman J. D.: 
A supplement to the Sturm separation theorem, with applications. Amer. Math. Monthly 72 (1965), 359–366, 390.  
MR 0176147 | 
Zbl 0135.29702[14] Mirzov J. D.: 
On some analogs of Sturm’s and Kneser’s theorems for nonlinear systems. J. Math. Anal. Appl. 53 (1976), 418–426.  
MR 0402184 | 
Zbl 0327.34027[15] Mirzov J. D.: 
Principal and nonprincipal solutions of a nonoscillatory system. Tbiliss. Gos. Univ. Inst. Prikl. Mat. Trudy 31 (1988), 100–117.   
MR 1001343