| Title:
             | 
Banach function spaces and exponential instability of evolution families (English) | 
| Author:
             | 
Megan, Mihail | 
| Author:
             | 
Sasu, Luminita | 
| Author:
             | 
Sasu, Bogdan | 
| Language:
             | 
English | 
| Journal:
             | 
Archivum Mathematicum | 
| ISSN:
             | 
0044-8753 (print) | 
| ISSN:
             | 
1212-5059 (online) | 
| Volume:
             | 
39 | 
| Issue:
             | 
4 | 
| Year:
             | 
2003 | 
| Pages:
             | 
277-286 | 
| Summary lang:
             | 
English | 
| . | 
| Category:
             | 
math | 
| . | 
| Summary:
             | 
In this paper we give necessary and sufficient conditions for uniform exponential instability of evolution families in Banach spaces, in terms of Banach function spaces. Versions of some well-known theorems due to Datko, Neerven, Rolewicz and Zabczyk, are obtained for the case of uniform exponential instability of evolution families. (English) | 
| Keyword:
             | 
evolution family | 
| Keyword:
             | 
uniform exponential instability | 
| Keyword:
             | 
Banach function spaces | 
| MSC:
             | 
34D05 | 
| MSC:
             | 
34D20 | 
| MSC:
             | 
34G10 | 
| MSC:
             | 
34G20 | 
| MSC:
             | 
47D06 | 
| idZBL:
             | 
Zbl 1116.34328 | 
| idMR:
             | 
MR2028738 | 
| . | 
| Date available:
             | 
2008-06-06T22:42:17Z | 
| Last updated:
             | 
2012-05-10 | 
| Stable URL:
             | 
http://hdl.handle.net/10338.dmlcz/107875 | 
| . | 
| Reference:
             | 
[1] Chow S. N., Leiva H.: Existence and roughness of the exponential dichotomy for linear skew-product semiflows in Banach space.J. Differential Equations 120 (1995), 429–477.  MR 1347351 | 
| Reference:
             | 
[2] Chicone C., Latushkin Y.: Evolution Semigroups in Dynamical Systems and Differential Equations.Math. Surveys Monogr. 70, Amer. Math. Soc., 1999.  Zbl 0970.47027, MR 1707332 | 
| Reference:
             | 
[3] Daleckii J. L., Krein M. G.: Stability of Solutions of Differential Equations in Banach Spaces.Transl. Math. Monogr. 43, Amer. Math. Soc., Providence, R.I., 1974.  MR 0352639 | 
| Reference:
             | 
[4] Datko R.: Uniform asymptotic stability of evolutionary processes in a Banach space.SIAM J. Math. Anal. 3 (1972), 428–445.  Zbl 0241.34071, MR 0320465 | 
| Reference:
             | 
[5] Meyer-Nieberg P.: Banach Lattices.Springer Verlag, Berlin, Heidelberg, New York, 1991.  Zbl 0743.46015, MR 1128093 | 
| Reference:
             | 
[6] Megan M., Sasu B., Sasu A. L.: On uniform exponential stability of evolution families.Riv. Mat. Univ. Parma 4 (2001), 27–43.  Zbl 1003.34045, MR 1878009 | 
| Reference:
             | 
[7] Megan M., Sasu A. L., Sasu B.: Nonuniform exponential instability of evolution operators in Banach spaces.Glas. Mat. Ser. III 56 (2001), 287–295.  MR 1884449 | 
| Reference:
             | 
[8] Megan M., Sasu B., Sasu A. L.: On nonuniform exponential dichotomy of evolution operators in Banach spaces.Integral Equations Operator Theory 44 (2002), 71–78.  Zbl 1034.34056, MR 1913424 | 
| Reference:
             | 
[9] Megan M., Sasu A. L., Sasu B.: On uniform exponential stability of linear skew- -product semiflows in Banach spaces.Bull. Belg. Math. Soc. Simon Stevin 9 (2002), 143–154.  Zbl 1032.34046, MR 1905653 | 
| Reference:
             | 
[10] Megan M., Sasu A. L., Sasu B.: Discrete admissibility and exponential dichotomy for evolution families.Discrete Contin. Dynam. Systems 9 (2003), 383–397.  Zbl 1032.34048, MR 1952381 | 
| Reference:
             | 
[11] Megan M., Sasu A. L., Sasu B.: Theorems of Perron type for uniform exponential dichotomy of linear skew-product semiflows.Bull. Belg. Mat. Soc. Simon Stevin 10 (2003), 1–21.  Zbl 1045.34022, MR 2032321 | 
| Reference:
             | 
[12] Megan M., Sasu A. L., Sasu B.: Perron conditions for uniform exponential expansiveness of linear skew-product flows.Monatsh. Math. 138 (2003), 145–157.  Zbl 1023.34043, MR 1964462 | 
| Reference:
             | 
[13] Megan M., Sasu B., Sasu A. L.: Exponential expansiveness and complete admissibility for evolution families.Czech. Math. J. 53 (2003).  Zbl 1080.34546, MR 2086730 | 
| Reference:
             | 
[14] Megan M., Sasu A. L., Sasu B.: Perron conditions for pointwise and global exponential dichotomy of linear skew-product flows.accepted for publication in Integral Equations Operator Theory.  Zbl 1064.34035, MR 2105960 | 
| Reference:
             | 
[15] Megan M., Sasu A. L., Sasu B.: Theorems of Perron type for uniform exponential stability of linear skew-product semiflows.accepted for publication in Dynam. Contin. Discrete Impuls. Systems.  Zbl 1079.34047 | 
| Reference:
             | 
[16] van Minh N., Räbiger F., Schnaubelt R.: Exponential stability, exponential expansiveness and exponential dichotomy of evolution equations on the half line.Integral Equations Operator Theory 32 (1998), 332–353.  Zbl 0977.34056, MR 1652689 | 
| Reference:
             | 
[17] van Neerven J. M. A. M.: Exponential stability of operators and operator semigroups.J. Funct. Anal. 130 (1995), 293–309.  Zbl 0832.47034, MR 1335382 | 
| Reference:
             | 
[18] van Neerven J. M. A. M.: The Asymptotic Behaviour of Semigroups of Linear Operators.Operator Theory Adv. Appl. 88, Birkhäuser, Bassel, 1996.  Zbl 0905.47001, MR 1409370 | 
| Reference:
             | 
[19] Rolewicz S.: On uniform N - equistability.J. Math. Anal. Appl. 115 (1986), 434–441.  Zbl 0597.34064, MR 0836237 | 
| Reference:
             | 
[20] Zabczyk J.: Remarks on the control of discrete-time distributed parameter systems.SIAM J. Control Optim. 12 (1994), 721–735.   MR 0410506 | 
| . |