| Title:
             | 
On the $H$-property of some Banach sequence spaces (English) | 
| Author:
             | 
Suantai, Suthep | 
| Language:
             | 
English | 
| Journal:
             | 
Archivum Mathematicum | 
| ISSN:
             | 
0044-8753 (print) | 
| ISSN:
             | 
1212-5059 (online) | 
| Volume:
             | 
39 | 
| Issue:
             | 
4 | 
| Year:
             | 
2003 | 
| Pages:
             | 
309-316 | 
| Summary lang:
             | 
English | 
| . | 
| Category:
             | 
math | 
| . | 
| Summary:
             | 
In this paper we define a generalized Cesàro sequence space $\operatorname{ces\,}(p)$ and consider it equipped with the Luxemburg norm under which it is a Banach space, and we show that the space $\operatorname{ces\,}(p)$ posses property (H) and property (G), and it is rotund, where $p = (p_k)$ is a bounded sequence of positive real numbers with $p_k > 1$ for all $k \in N$. (English) | 
| Keyword:
             | 
H-property | 
| Keyword:
             | 
property (G) | 
| Keyword:
             | 
Cesàro sequence spaces | 
| Keyword:
             | 
Luxemburg norm | 
| MSC:
             | 
46B20 | 
| MSC:
             | 
46B45 | 
| idZBL:
             | 
Zbl 1115.46012 | 
| idMR:
             | 
MR2032104 | 
| . | 
| Date available:
             | 
2008-06-06T22:42:28Z | 
| Last updated:
             | 
2012-05-10 | 
| Stable URL:
             | 
http://hdl.handle.net/10338.dmlcz/107879 | 
| . | 
| Reference:
             | 
[1] Chen, S. T.: Geometry of Orlicz spaces, Dissertationes Math..1996, pp. 356. MR 1410390 | 
| Reference:
             | 
[2] Cui, Y. A. and Hudzik, H.: On the Banach-Saks and weak Banach-Saks properties of some Banach sequence spaces.Acta Sci. Math. (Szeged ) 65 (1999), 179–187. MR 1702144 | 
| Reference:
             | 
[3] Cui, Y. A., Hudzik, H. and Meng, C.: On some local geometry of Orlicz sequence spaces equipped the Luxemburg norms.Acta Math. Hungar. 80 (1-2) (1998), 143–154. MR 1624558 | 
| Reference:
             | 
[4] Cui, Y. A., Hudzik, H. and Pliciennik, R.: Banach-Saks property in some Banach sequence spaces.Annales Math. Polonici 65 (1997), 193–202. MR 1432051 | 
| Reference:
             | 
[5] Cui, Y. A. and Meng, C.: Banach-Saks property and property ($\beta $) in Cesàro sequence spaces.SEA. Bull. Math. 24 (2000), 201–210. MR 1810056 | 
| Reference:
             | 
[6] Diestel, J.: Geometry of Banach Spaces - Selected Topics.Springer-Verlag, 1984. MR 0461094 | 
| Reference:
             | 
[7] Grzaslewicz, R., Hudzik, H. and Kurc, W.: Extreme and exposed points in Orlicz spaces.Canad. J. Math. 44 (1992), 505–515. MR 1176367 | 
| Reference:
             | 
[8] Hudzik, H.: Orlicz spaces without strongly extreme points and without H-points.Canad. Math. Bull. 35 (1992), 1–5. MR 1222531 | 
| Reference:
             | 
[9] Hudzik, H. and Pallaschke, D.: On some convexity properties of Orlicz sequence spaces.Math. Nachr. 186 (1997), 167–185. MR 1461219 | 
| Reference:
             | 
[10] Lee, P. Y.: Cesàro sequence spaces.Math. Chronicle, New Zealand 13 (1984), 29–45. Zbl 0568.46006, MR 0769798 | 
| Reference:
             | 
[11] Lin, B. L., Lin, P. K. and Troyanski, S. L.: Characterization of denting points.Proc. Amer. Math. Soc. 102 (1988), 526–528. MR 0928972 | 
| Reference:
             | 
[12] Liu, Y. Q., Wu, B. E. and Lee, Y. P.: Method of sequence spaces.Guangdong of Science and Technology Press (1996 (in Chinese)). | 
| Reference:
             | 
[13] Musielak, J.: Orlicz spaces and modular spaces.Lecture Notes in Math. 1034, Springer-Verlag, (1983). Zbl 0557.46020, MR 0724434 | 
| Reference:
             | 
[14] Pluciennik, R., Wang, T. F. and Zhang, Y. L.: H-points and Denting Points in Orlicz Spaces.Comment. Math. Prace Mat. 33 (1993), 135–151. MR 1269408 | 
| Reference:
             | 
[15] Sanhan, W.: On geometric properties of some Banach sequence spaces.Thesis for the degree of Master of Science in Mathematics, Chiang Mai University, 2000. | 
| Reference:
             | 
[16] Shue, J. S.: Cesàro sequence spaces.Tamkang J. Math. 1 (1970), 143–150. | 
| . |