[1] Alekseevsky D. V., Michor P. W.: 
Differential Geometry of Cartan connections. Publ. Math. Debrecen 47 (1995), 349–375.  
MR 1362298 | 
Zbl 0857.53011[2] Blair D. E.: 
Contact manifolds in Riemannian Geometry. Lecture Notes in Math. 509, 1976, Springer–Verlag.  
MR 0467588 | 
Zbl 0319.53026[3] Blair D. E.: 
Geometry of manifolds with structural group ${\mathcal{U}}(n)\times {\mathcal{O}}(s)$. J. Differential Geom. 4 (1970), 155–167.  
MR 0267501[4] Duggal K. L., Ianus S., Pastore A. M.: 
Maps interchanging $f$-structures and their harmonicity. Acta Appl. Math. 67 (2001), 91–115.  
MR 1847885 | 
Zbl 1030.53048[5] Kobayashi S., Nomizu K.: 
Foundations of Differential Geometry, Vol. I. Interscience, New-York, 1963.  
MR 0152974[6] Kobayashi S., Nomizu K.: 
Foundations of Differential Geometry, Vol. II. Interscience, New-York, 1969.  
MR 0238225 | 
Zbl 0175.48504[7] Lotta A.: 
Cartan connections on $CR$ manifolds. PhD Thesis, University of Pisa, 2000.  
Zbl 1053.32507[8] Mizner R. I.: 
Almost CR structures, $f$-structures, almost product structures and associated connections. Rocky Mountain J. Math. 23, no. 4 (1993), 1337–1359.  
MR 1256452 | 
Zbl 0806.53030[9] Sharpe R. W.: 
Differential geometry. Cartan’s generalization of Klein’s Erlangen program. Graduate Texts in Mathematics 166, Springer-Verlag, New York, 1997.  
MR 1453120 | 
Zbl 0876.53001[10] Tanaka N.: 
On non-degenerate real hypersurfaces, graded Lie algebras and Cartan connections. Japan. J. Math. 20 (1976), 131–190.  
MR 0589931 | 
Zbl 0346.32010[11] Tanno S.: 
Variational problems on contact Riemannian manifolds. Trans. Amer. Math. Soc., Vol. 314 (1989), 349–379.  
MR 1000553 | 
Zbl 0677.53043[12] Tanno S.: 
The automorphism groups of almost contact Riemannian manifolds. Tohoku Math. J. 21 (1969), 21–38.  
MR 0242094 | 
Zbl 0188.26705[13] Urakawa H.: 
Yang-Mills connections over compact strongly pseudoconvex CR manifolds. Math. Z. 216 (1994), 541–573.  
MR 1288045 | 
Zbl 0815.32008[14] Webster S. M.: 
Pseudo-hermitian structures on a real hypersurface. J. Differential Geom. 13 (1978), 25–41.  
MR 0520599 | 
Zbl 0379.53016[15] Yano K.: 
On a structure defined by a tensor field $f$ of type $(1,1)$ satisfying $f^3+f=0$. Tensor (N.S.) 14 (1963), 99–109.   
MR 0159296