Previous |  Up |  Next


singular solutions; noncontinuable solutions; second order equations
In the paper a sufficient condition for all solutions of the differential equation with $p$-Laplacian to be proper. Examples of super-half-linear and sub-half-linear equations $(|y^{\prime }|^{p-1} y^{\prime })^{\prime } + r(t) |y|^\lambda \operatorname{sgn}y = 0$, $r>0$ are given for which singular solutions exist (for any $p>0$, $\lambda > 0$, $p\ne \lambda $).
[1] Bartušek M.: Asymptotic properties of oscillatory solutions of differential equations of $n$-th order. Folia Fac. Sci. Natur. Univ. Masaryk. Brun. Math. 1992. MR 1271586
[2] Bartušek M., Cecchi M., Došlá Z., Marini M.: Global monotonicity and oscillation for second order differential equation. Czechoslovak Math. J., to appear. MR 2121668 | Zbl 1081.34029
[3] Coffman C. V., Ullrich D. F.: On the continuation of solutions of a certain non-linear differential equation. Monatsh. Math. B 71 (1967), 385–392. MR 0227494 | Zbl 0153.40204
[4] Coffman C. V., Wong J. S. W.: Oscillation and nonoscillation theorems for second order differential equations. Funkcial. Ekvac. 15 (1972), 119–130. MR 0333337
[5] Cecchi M., Došlá Z., Marini M.: On nonoscillatory solutions of differential equations with $p$-Laplacian. Adv. Math. Sci. Appl. 11 (2001), 419–436. MR 1842385 | Zbl 0996.34039
[6] Došlý O.: Qualitative theory of half-linear second order differential equations. Math. Bohem. 127 (2002), 181–195. MR 1981523
[7] Heidel J. W.: Uniqueness, continuation and nonoscillation for a second order differential equation. Pacific J. Math. 32 (1970), 715–721. MR 0259244
[8] Mirzov D.: Asymptotic properties of solutions of systems of nonlinear nonautonomous ordinary differential equations. Folia Fac. Sci. Natur. Univ. Masaryk. Brun. Math. 14 2004. MR 2144761 | Zbl 1154.34300
[9] Kiguradze I., Chanturia T.: Asymptotic properties of solutions of nonautonomous ordinary differential equations. Kluwer, Dordrecht 1993. Zbl 0782.34002
Partner of
EuDML logo