Article
Keywords:
unit ideal-stable range; symmetry
Summary:
In this paper, we prove that unit ideal-stable range condition is right and left symmetric.
References:
                        
[2] Menal P., Moncasi J.: 
$K_1$ of von Neumann regular rings. J. Pure Appl. Algebra 33 (1984), 295–312.  
MR 0761635[3] You H.: 
$K_2(R,I)$ of unit $1$-stable ring. Chin. Sci. Bull. 35 (1990), 1590–1595.  
MR 1206598[5] Chen H.: 
Exchange rings with artinian primitive factors. Algebra Represent. Theory 2 (1999), 201–207.  
MR 1702275 | 
Zbl 0960.16009[6] Chen H.: 
Exchange rings satisfying unit $1$-stable range. Kyushu J. Math. 54 (2000), 1–6.  
MR 1762788 | 
Zbl 0999.16004[7] Chen H., Li F.: 
Exchange rings satisfying ideal-stable range one. Sci. China Ser. A 44 (2001), 580–586.  
MR 1843753[8] Chen H.: 
Morita contexts with generalized stable conditions. Comm. Algebra 30 (2002), 2699–2713.  
MR 1908234 | 
Zbl 1008.16008[9] Yu H. P.: 
Stable range one for exchange rings. J. Pure Appl. Algebra 98 (1995), 105–109.  
MR 1317002 | 
Zbl 0837.16009[10] Chen H., Chen M.: 
On unit $1$-stable range. J. Appl. Algebra $\&$ Discrete Structures 1 (2003), 189–196.   
MR 2013280