| Title:
             | 
On the existence of solutions of some second order nonlinear difference equations (English) | 
| Author:
             | 
Migda, Małgorzata | 
| Author:
             | 
Schmeidel, Ewa | 
| Author:
             | 
Zbąszyniak, Małgorzata | 
| Language:
             | 
English | 
| Journal:
             | 
Archivum Mathematicum | 
| ISSN:
             | 
0044-8753 (print) | 
| ISSN:
             | 
1212-5059 (online) | 
| Volume:
             | 
41 | 
| Issue:
             | 
4 | 
| Year:
             | 
2005 | 
| Pages:
             | 
379-388 | 
| Summary lang:
             | 
English | 
| . | 
| Category:
             | 
math | 
| . | 
| Summary:
             | 
We consider a second order nonlinear difference equation \[ \Delta ^2 y_n = a_n y_{n+1} + f(n,y_n,y_{n+1})\,,\quad n\in N\,. \qquad \mathrm {(\mbox{E})}\] The necessary conditions under which there exists a solution of equation (E) which can be written in the form \[ y_{n+1} = \alpha _{n}{u_n} + \beta _{n}{v_n}\,,\quad \mbox{are given.} \] Here $u$ and $v$ are two linearly independent solutions of equation \[ \Delta ^2 y_n = a_{n+1} y_{n+1}\,, \quad ({\lim \limits _{n \rightarrow \infty } \alpha _{n} = \alpha <\infty } \quad {\rm and} \quad {\lim \limits _{n \rightarrow \infty } \beta _{n} = \beta <\infty })\,. \] A special case of equation (E) is also considered. (English) | 
| Keyword:
             | 
nonlinear difference equation | 
| Keyword:
             | 
nonoscillatory solution | 
| Keyword:
             | 
second order | 
| MSC:
             | 
39A10 | 
| MSC:
             | 
39A11 | 
| idZBL:
             | 
Zbl 1122.39001 | 
| idMR:
             | 
MR2195491 | 
| . | 
| Date available:
             | 
2008-06-06T22:46:36Z | 
| Last updated:
             | 
2012-05-10 | 
| Stable URL:
             | 
http://hdl.handle.net/10338.dmlcz/107967 | 
| . | 
| Reference:
             | 
[1] Agarwal R. P.: Difference equations and inequalities. Theory, methods and applications.Marcel Dekker, Inc., New York 1992.  Zbl 0925.39001, MR 1155840 | 
| Reference:
             | 
[2] Cheng S. S., Li H. J., Patula W. T.: Bounded and zero convergent solutions of second order difference equations.J. Math. Anal. Appl. 141 (1989), 463–483.  MR 1009057 | 
| Reference:
             | 
[3] Drozdowicz A.: On the asymptotic behavior of solutions of the second order difference equations.Glas. Mat. 22 (1987), 327–333. | 
| Reference:
             | 
[4] Elaydi S. N.: An introduction to difference equation.Springer-Verlag, New York 1996.  MR 1410259 | 
| Reference:
             | 
[5] Kelly W. G., Peterson A. C.: Difference equations.Academic Press, Inc., Boston-San Diego 1991.  MR 1142573 | 
| Reference:
             | 
[6] Medina R., Pinto M.: Asymptotic behavior of solutions of second order nonlinear difference equations.Nonlinear Anal. 19 (1992), 187–195.  Zbl 0773.39003, MR 1174467 | 
| Reference:
             | 
[7] Migda J., Migda M.: Asymptotic properties of the solutions of second order difference equation.Arch. Math. (Brno) 34 (1998), 467–476.  MR 1679641 | 
| Reference:
             | 
[8] Migda M.: Asymptotic behavior of solutions of nonlinear delay difference equations.Fasc. Math. 31 (2001), 57–62.  MR 1860548 | 
| Reference:
             | 
[9] Migda M., Schmeidel E., Zbąszyniak M.: Some properties of solutions of second order nonlinear difference equations.Funct. Differ. Equ. 11 (2004), 147–152.  MR 2056707 | 
| Reference:
             | 
[10] Popenda J., Werbowski J.: On the asymptotic behavior of the solutions of difference equations of second order.Ann. Polon. Math. 22 (1980), 135–142.  MR 0610341 | 
| Reference:
             | 
[11] Schmeidel E.: Asymptotic behaviour of solutions of the second order difference equations.Demonstratio Math. 25 (1993), 811–819.  Zbl 0799.39001, MR 1265844 | 
| Reference:
             | 
[12] Thandapani E., Arul R., Graef J. R., Spikes P. W.: Asymptotic behavior of solutions of second order difference equations with summable coefficients.Bull. Inst. Math. Acad. Sinica 27 (1999), 1–22.  Zbl 0920.39001, MR 1681601 | 
| Reference:
             | 
[13] Thandapani E., Manuel M. M. S., Graef J. R., Spikes P. W.: Monotone properties of certain classes of solutions of second order difference equations, Advances in difference equations II.Comput. Math. Appl. 36 (1998), 291–297.   MR 1666147 | 
| . |